forked from sympy/sympy
-
Notifications
You must be signed in to change notification settings - Fork 0
old wiki Examples
Alexey U. Gudchenko edited this page Dec 2, 2011
·
2 revisions
Note: This document was superseded by [http://code.google.com/p/sympy/wiki/Tutorial Tutorial], that contains everything here plus much more.
This document contains examples of most of the features of sympy.
You can find all the following examples in the examples
directory as regular python scripts. More examples can be found in the tests directory in form of the testing suite.
Note: the code in examples
directory is uptodate. We want to generate this page automatically, but until then, if the code on this page doesn't work, try the corresponding example in the svn repository.
>>> import sympy
>>> a=sympy.Symbol('a')
>>> b=sympy.Symbol('b')
>>> c=sympy.Symbol('c')
>>> e=( a*b*b+2*b*a*b )**c
>>> print e
b^(2*c)*a^c*3^c
>>> import sympy
>>> a=sympy.Symbol('a')
>>> b=sympy.Symbol('b')
>>> e=(a+b)**5
>>> print e
(b+a)^5
>>> print e.expand()
10*a^3*b^2+5*b^4*a+a^5+b^5+5*a^4*b+10*a^2*b^3
>>> import sympy
>>> a=sympy.Symbol('a')
>>> b=sympy.Symbol('b')
>>> e=sympy.log((a+b)**5)
>>> print e
5*log(b+a)
>>> e=sympy.exp(e)
>>> print e
exp(5*log(b+a))
>>> e=sym.log(sympy.exp((a+b)**5))
>>> print e
(b+a)^5
>>> import sympy
>>> a=sympy.Symbol('a')
>>> b=sympy.Symbol('b')
>>> e=(a+2*b)**5
>>> print e
(2*b+a)^5
>>> print e.diff(a)
5*(2*b+a)^4
>>> print e.diff(b)
10*(2*b+a)^4
>>> print e.diff(b).diffn(a,3)
240*(2*b+a)
>>> print e.expand().diff(b).diffn(a,3)
240*a+480*b
>>> import sympy
>>> x=sympy.Symbol('x')
>>> e=1/sympy.cos(x)
>>> print e.series(x,10)
1+50521/3628800*x^10+61/720*x^6+1/2*x^2+5/24*x^4+277/8064*x^8
>>> e=1/sympy.sin(x)
>>> print e.series(x,4)
x^(-1)+1/36*x^3+1/216*x^5+1/6*x
>>> import sympy
>>> x=sympy.Symbol('x')
>>> y=sympy.Symbol('y')
>>> e=1/sympy.cos(x)
>>> print e
cos(x)^(-1)
>>> print e.subs(sympy.cos(x),y)
y^(-1)
>>> print e.subs(sympy.cos(x),y).subs(y,x**2)
x^(-2)
>>> e=1/sympy.log(x)
>>> e=e.subs(x,sympy.Real(2.71828))
>>> print e
log(2.71828)^(-1)
>>> print e.evalf()
1.00000067265
>>> import sympy
>>> e=sympy.Rational(2)**50/sympy.Rational(10)**50
>>> print e
1/88817841970012523233890533447265625
>>> from sympy import exp,log,Symbol,Rational,sin,limit,limitinf
>>>
>>> x=Symbol("x")
>>> a=Symbol("a")
>>> h=Symbol("h")
>>>
>>> def sqrt(x):
... return x**Rational(1,2)
...
>>> def sqrt3(x):
... return x**Rational(1,3)
...
>>> def limitminf(f,x):
... return limitinf(f.subs(x,-x),x)
...
>>> def show(computed, correct):
... print "computed:",computed,"correct:",correct
...
>>> show( limitinf(sqrt(x**2-5*x+6)-x,x) , -Rational(5)/2 )
computed: (-5/2) correct: (-5/2)
>>> show( limitinf(x*(sqrt(x**2+1)-x),x) , Rational(1)/2 )
computed: 1/2 correct: 1/2
>>> show( limitinf(x-sqrt3(x**3-1),x) , Rational(0) )
computed: 0 correct: 0
>>> show( limitminf(log(1+exp(x))/x,x) , Rational(0) )
computed: 0 correct: 0
>>> show( limitinf(log(1+exp(x))/x,x) , Rational(1) )
computed: 1 correct: 1
>>> show( limit(sin(3*x)/x,x,0) , Rational(3) )
computed: 3 correct: 3
>>> show( limit(sin(5*x)/sin(2*x),x,0) , Rational(5)/2 )
computed: 5/2 correct: 5/2
>>> show( limitinf(((x-1)/(x+1))**x,x) , exp(-2))
computed: exp((-2)) correct: exp((-2))