forked from sympy/sympy
-
Notifications
You must be signed in to change notification settings - Fork 0
Matrices eigenvalues
goodok edited this page Nov 17, 2011
·
5 revisions
>>> from sympy.matrices import Matrix
>>> M = Matrix(4, 4, lambda i,j: i*j+1)
>>> M.eigenvals() #doctest: -PRETTY, +RELEASE_ONLY
{0: 2, -61**(1/2) + 9: 1, 61**(1/2) + 9: 1}
>>> M.eigenvals() #doctest: -PRETTY, +FUTURE_ONLY
{0: 2, -sqrt(61) + 9: 1, sqrt(61) + 9: 1}
>>> M = Matrix(4, 4, lambda i,j: i*j+2)
>>> M.eigenvals()
{0: 2, 2: 1, 20: 1}
>>> M = Matrix(4, 4, lambda i,j: i*j+3)
>>> M.eigenvals()
_____ _____
{0: 2, - \/ 109 + 13: 1, \/ 109 + 13: 1}
>>> M
[3 3 3 3 ]
[ ]
[3 4 5 6 ]
[ ]
[3 5 7 9 ]
[ ]
[3 6 9 12]
>>> from sympy.abc import x
>>> M = Matrix(4, 4, lambda i,j: i*j+x)
>>> M
[x x x x ]
[ ]
[x x + 1 x + 2 x + 3]
[ ]
[x x + 2 x + 4 x + 6]
[ ]
[x x + 3 x + 6 x + 9]
>>> M.eigenvals()
_________________ _________________
/ 2 / 2
{0: 2, 2*x - \/ 4*x + 8*x + 49 + 7: 1, 2*x + \/ 4*x + 8*x + 49 + 7: 1}
Such things are really tedious to do by hand, but in SymPy one can do them just fine.