-
Notifications
You must be signed in to change notification settings - Fork 0
Numerics Module
The module `sympy.numerics` implements arbitrary-precision arithmetic. It has not yet been fully integrated into SymPy.
_Note: the `numerics` module is currently being reimplemented as a standalone Python library, mpmath._
The classes `Float` and `ComplexFloat` behave roughly like Python's `float` and `complex`, except for being capable of arbitrary precision. `Float`s and `ComplexFloat`s can be created from regular Python numbers (`int`, `float`, `complex`), decimal strings, and also from SymPy `Rational`s.
>>> from sympy import *
>>> from sympy.numerics import *
>>> Float(1) - Float(0.25) - Float('0.25') - Float(Rational(1,4))
Float('0.25')
>>> ComplexFloat(2, 3)
ComplexFloat(real='2', imag='3')
>>> ComplexFloat(1j) + 2
ComplexFloat(real='2', imag='1')
The working precision can be controlled through the static `setdps` method on the `Float` class (the default is 15 decimal places, which corresponds to 53 bits -- the same as Python's `float`).
>>> 2**0.5
1.4142135623730951
>>> Float(2)**0.5
Float('1.4142135623730951')
>>> Float.setdps(10)
>>> Float(2)**0.5
Float('1.41421356237')
>>> Float.setdps(100)
>>> Float(2)**0.5
Float('1.41421356237309504880168872420969807856967187537694807317667973799073247
846210703885038753432764157274')
`Float` also supports various rounding modes: `ROUND_DOWN`, `ROUND_UP`, `ROUND_FLOOR`, `ROUND_CEILING`, `ROUND_HALF_UP`, `ROUND_HALF_DOWN`, and `ROUND_HALF_EVEN` (default). However, these rounding modes are not yet correctly supported in arithmetic operations. For more details on managing the working precision and rounding modes, refer to the docstrings for the `Float` class.
The method `ae` can be used for approximate equality testing:
>>> Float.setdps(15)
>>> Float(0).ae(1e-14)
False
>>> Float(0).ae(1e-16)
True
The `evalf` function evaluates exact SymPy expressions into `Float`s or `ComplexFloat` approximations. It currently supports regular algebraic expressions and simple functions and constants like `pi`, `exp`, etc.
>>> evalf((sqrt(pi) + 2*I)**Rational(-1,3))
ComplexFloat(real='0.69217119929576842', imag='-0.20044721328786239')
>>> Float.setdps(50)
>>> evalf((1+sqrt(5))/2)
Float('1.618033988749894848204586834365638117720309179805764')
The modules `numerics.functions` and `numerics.functions2` provide mathematical functions. `functions` contains standard functions like those found in the Python `math` library while `functions2` contains higher transcendental functions. Some mathematical constants are also available in the `numerics.constants` module.
The functions are incompatible with SymPy's symbolic functions (so be careful with the imports).
All available functions and constants can be computed with arbitrary precision. Most functions also support both real and complex numbers. For example, this computes a complex exponential with standard precision:
>>> print exp(1j)
(0.540302305868140 + 0.841470984807897*I)
As another example, the Riemann zeta function value zeta(3) can easily be computed to, say, 1000 digits:
>>> from sympy.numerics.functions2 import *
>>> Float.setdps(1000)
>>> print zeta(3)
1.202056903159594285399738161511449990764986292340498881792271555341838205786313
09018645587360933525814619915779526071941849199599867328321377639683720790016145
39417829493600667191915755222424942439615639096641032911590957809655146512799184
05105715255988015437109781102039827532566787603522336984941661811057014715778639
49973752378527793703095602570185318279000307654710756304884332086971157374238079
34450316076253177145354444118311781822497185263570918244899879620350833575617202
26033937858703281312678079900541773486911525370656237057440966221712902627320732
36149224291304052855537234103307757779806424202430488281521000914602653822069627
15520208227433500101529480119869011762595167636699817183557523488070371955574234
72940835952088616662025728537558130792825864872821737055661968989526620187768106
29200817792338135876828426412432431480282173674506720693507626895304345939375032
96636377575062473323992348288310773390527680200757984356793711505090050273660471
14008533503436467224856531518117766181092
A complex value of the gamma function:
>>> Float.setdps(100)
>>> print gamma(4+4j)
(0.70586493259130839346071813678914214452369427366070170491688388773844963999772
56803721515698482878208 + -0.496739083997423706378466662866211303078212882210124
1493483556416020374941674783230290913075953637038*I)
The constant pi is available through a function `pi_float()` that returns an approximation of pi accurate to within the current working precision. The `examples` directory also contains a script `pidigits.py` for computing pi with extremely high precision (millions of digits for the patient).
The module `numerics.optimize` contains functions for root-finding and optimization.
The functions `bisect` and `secant` functions can be used to find isolated roots of decently well-behaved functions. As a simple example; using the secant method to calculate pi as the root of sin(x) closest to x = 3:
>>> from sympy.numerics.optimize import secant
>>> from sympy.numerics.functions import sin
>>> Float.setdps(50)
>>> print secant(sin, 3)
3.1415926535897932384626433832795028841971693993751
With details:
>>> print secant(sin, 3, verbose=True)
secant: x_1=3.000000 delta=-0.03
secant: x_2=3.142264 delta=0.142264
secant: x_3=3.141590 delta=-0.0006733
secant: x_4=3.141593 delta=2.23687e-006
secant: x_5=3.141593 delta=-1.67327e-013
secant: x_6=3.141593 delta=1.39539e-025
secant: x_7=3.141593 delta=0
3.1415926535897932384626433832795028841971693993751
More examples and details on usage are available in the function docstrings.
The function `polyroots` finds all roots of a polynomial using complex arithmetic.
>>> from sympy.numerics.optimize import polyroots
>>> x = Symbol('x')
>>> roots, error = polyroots(x**3 - 2*x**2 + x + 2)
>>> for r in roots: print r
...
(-0.695620769559862 + 6.78546596234906E-24*I)
(1.34781038477993 + -1.02885225413669*I)
(1.34781038477993 + 1.02885225413669*I)
>>> print error
4.24223028408244E-17
This polynomial is very ill-conditioned:
>>> x = Symbol('x')
>>> W = 1
>>> for i in range(1, 14):
... W = W * (x-i)
...
>>> W = W.expand()
>>> roots, error = polyroots(W)
>>> for r in roots: print r
...
(1 + 0*I)
(2.00000000000052 + -6.78706583304582E-13*I)
(3.00000000091542 + 2.03402685728453E-9*I)
(3.99967891066583 + -0.000901013608686283*I)
(5.00026649719202 + -0.0000589434738259911*I)
(6.07300960794678 + 0.788765735425133*I)
(6.56514846614468 + 0.231277402207583*I)
(8.05562929719922 + -0.512541233266305*I)
(8.52882344788961 + 1.04323424522302*I)
(10.1764629806671 + -0.824843997843889*I)
(11.1117004516702 + 1.06172142342246*I)
(12.1969006408498 + -0.338168434918473*I)
(13.0738393202625 + 0.116644127674871*I)
>>> print error
0.978859971250306
In this case, calling `polyroots` with a higher `maxsteps` setting will give better results. It may also be necessary to increase the working precision.
The function `nintegrate` can be used to compute integrals numerically. It takes as input a regular Python function that operates on `Float`s (or `ComplexFloat`s), rather than a SymPy expression.
A simple integral, sin(x) between 0 and pi (`sin` and `pi_float` must be imported from `numerics.functions` and `numerics.constants`):
>>> nintegrate(lambda x: sin(x), 0, pi_float())
Float('2')
The `verbose` option shows what `nintegrate` does internally:
>>> nintegrate(lambda x: sin(x), 0, pi_float(), verbose=True)
calculating nodes for degree-13 Gauss-Legendre quadrature...
node 0 of 6
node 4 of 6
calculating nodes for degree-6 Gauss-Legendre quadrature...
node 0 of 3
0 0 3.14159265358979312
1 0 1.57079632679489656
2 0 0.785398163397448279
5 0.785398163397448279 1.57079632679489656
8 1.57079632679489656 3.14159265358979312
9 1.57079632679489656 2.35619449019234484
12 2.35619449019234484 3.14159265358979312
Float('2')
By default, `nintegrate` uses Gauss-Legendre quadrature. The degree of the quadrature rule depends on the precision level. Since computing nodes for the quadrature rule is a relatively expensive operation (often more expensive than evaluating the integral), computed weights are cached to make repeated calls to `nintegrate` faster.
The interval is adaptively divided into smaller parts to obtain high accuracy. In the example above, we see a count of the number of times the quadrature rule has been applied and the boundaries of each subinterval. In this case, a dozen applications were sufficient (a small piece of sine wave is an example of a very well-behaved integrand). If the integrand is less well-behaved and/or the working precision is set very high, `nintegrate` may require thousands of evaluations, or it might fail altogether. The `nintegrate` docstrings contain more information on how to deal with difficult integrals.
Here is an integral for Euler's constant (infinite integration intervals are supported):
>>> nintegrate(lambda x: -exp(-x)*log(x), 0, oo)
Float('0.57721566490153287')
It turns out that the standard Gaussian quadrature rule performs poorly on this integral when the precision is increased. If we choose the tanh-sinh method (`method=1`) instead, it only takes a few seconds to evaluate it with 100 digits:
>>> Float.setdps(100)
>>> nintegrate(lambda x: -exp(-x)*log(x), 0, oo, method=1)
Float('0.57721566490153286060651209008240243104215933593992359880576723488486772
6777664670936947063291746749503')
As verification, there is a function that computes Euler's constant in the `numerics.constants` module (it uses a more efficient algorithm):
>>> gamma_float()
Float('0.57721566490153286060651209008240243104215933593992359880576723488486772
6777664670936947063291746749517')
If `nintegrate` fails to reach full accuracy, it prints a warning message along with an estimate of the magnitude of the error.
Here is a very badly behaved integral where `nintegrate` fails altogether (the correct value is pi/2):
>>> nintegrate(lambda x: sin(x)/x, 0, oo, maxsteps=100)
Warning: failed to reach full accuracy. Estimated magnitude of error: 2
Float('0.75184212987527188')
Increasing the number of steps only makes things worse:
>>> nintegrate(lambda x: sin(x)/x, 0, oo, maxsteps=1000)
Warning: failed to reach full accuracy. Estimated magnitude of error: 6
Float('-1.9422180210118507')
A better approach in this case is to choose a finite upper limit:
>>> nintegrate(lambda x: sin(x)/x, 0, 100, maxsteps=1000)
Float('1.5622254668890563')
Here is a similar but slightly easier integral (the correct value is roughly 1.253).
>>> nintegrate(lambda x: sin(x**2)/x**2, 0, oo, maxsteps=1000)
Warning: failed to reach full accuracy. Estimated magnitude of error: 0.003
Float('1.2410979753100062')