-
Notifications
You must be signed in to change notification settings - Fork 0
Generating tables of derivatives and integrals
This example shows how SymPy can be used to automatically generate tables of, for instance, derivatives and integrals. We print the output in TeX (replacing the $-signs in the TeX output with \
[
\
]
-tags and subtracting \operatorname
commands for display on the wiki).
from sympy import *
def derivative_table(functions, x):
for f in functions:
s = printing.latex(Eq(Derivative(f, x), diff(f, x)))
print ":<math>" + s[1:-1] + "</math>", "\n"
def integral_table(functions, x):
for f in functions:
s = printing.latex(Eq(Integral(f,x), integrate(f, x)))
print ":<math>" + s[1:-1] + "</math>", "\n"
var('x')
print "### Derivatives"
derivative_table([cos(x)/(1 + sin(x)**i) for i in range(1, 5)], x)
print "### Integrals"
integral_table([x**i * exp(i*x) for i in range(1, 5)], x)
[ \frac{\partial}{\partial x}\left(\frac{\cos\left(x\right)}{1 + \sin\left(x\right)}\right) = - \frac{\sin\left(x\right)}{1 + \sin\left(x\right)} - \frac{\cos^{2}\left(x\right)}{\left(1 + \sin\left(x\right)\right)^{2}} ]
[ \frac{\partial}{\partial x}\left(\frac{\cos\left(x\right)}{1 + \sin^{2}\left(x\right)}\right) = - \frac{\sin\left(x\right)}{1 + \sin^{2}\left(x\right)} - 2 \frac{\cos^{2}\left(x\right) \sin\left(x\right)}{\left(1 + \sin^{2}\left(x\right)\right)^{2}} ]
[ \frac{\partial}{\partial x}\left(\frac{\cos\left(x\right)}{1 + \sin^{3}\left(x\right)}\right) = - \frac{\sin\left(x\right)}{1 + \sin^{3}\left(x\right)} - 3 \frac{\cos^{2}\left(x\right) \sin^{2}\left(x\right)}{\left(1 + \sin^{3}\left(x\right)\right)^{2}} ]
[ \frac{\partial}{\partial x}\left(\frac{\cos\left(x\right)}{1 + \sin^{4}\left(x\right)}\right) = - \frac{\sin\left(x\right)}{1 + \sin^{4}\left(x\right)} - 4 \frac{\cos^{2}\left(x\right) \sin^{3}\left(x\right)}{\left(1 + \sin^{4}\left(x\right)\right)^{2}} ]
[ \int x {e}^{x},dx = - {e}^{x} + x {e}^{x} ]
[ \int {x}^{2} {e}^{2 x},dx = \frac{1}{4} {e}^{2 x} + \frac{1}{2} {x}^{2}{e}^{2 x} - \frac{1}{2} x {e}^{2 x} ]
[ \int {x}^{3} {e}^{3 x},dx = - \frac{2}{27} {e}^{3 x} - \frac{1}{3} {x}^{2} {e}^{3 x} + \frac{1}{3} {x}^{3} {e}^{3 x} + \frac{2}{9} x {e}^{3 x} ]
[ \int {x}^{4} {e}^{4 x},dx = \frac{3}{128} {e}^{4 x} - \frac{3}{32} x {e}^{4 x} - \frac{1}{4} {x}^{3} {e}^{4 x} + \frac{1}{4} {x}^{4} {e}^{4 x} + \frac{3}{16} {x}^{2} {e}^{4 x} ]