-
Notifications
You must be signed in to change notification settings - Fork 98
VCVTUQQ2PS
Henk-Jan Lebbink edited this page Jun 5, 2018
·
12 revisions
VCVTUQQ2PS — Convert Packed Unsigned Quadword Integers to Packed Single-Precision Floating-Point Values
Opcode/ Instruction | Op / En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
EVEX.128.F2.0F.W1 7A /r VCVTUQQ2PS xmm1 {k1}{z}, xmm2/m128/m64bcst | A | V/V | AVX512VL AVX512DQ | Convert two packed unsigned quadword integers from xmm2/m128/m64bcst to packed single-precision floating- point values in zmm1 with writemask k1. |
EVEX.256.F2.0F.W1 7A /r VCVTUQQ2PS xmm1 {k1}{z}, ymm2/m256/m64bcst | A | V/V | AVX512VL AVX512DQ | Convert four packed unsigned quadword integers from ymm2/m256/m64bcst to packed single-precision floating- point values in xmm1 with writemask k1. |
EVEX.512.F2.0F.W1 7A /r VCVTUQQ2PS ymm1 {k1}{z}, zmm2/m512/m64bcst{er} | A | V/V | AVX512DQ | Convert eight packed unsigned quadword integers from zmm2/m512/m64bcst to eight packed single-precision floating-point values in zmm1 with writemask k1. |
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
A | Full | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
Converts packed unsigned quadword integers in the source operand (second operand) to single-precision floating- point values in the destination operand (first operand).
EVEX encoded versions: The source operand is a ZMM/YMM/XMM register or a 512/256/128-bit memory location. The destination operand is a YMM/XMM/XMM (low 64 bits) register conditionally updated with writemask k1.
Note: EVEX.vvvv is reserved and must be 1111b, otherwise instructions will #UD.
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j ← 0 TO KL-1
i ← j * 32
k ← j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] ←
Convert_UQuadInteger_To_Single_Precision_Floating_Point(SRC[k+63:k])
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE
; zeroing-masking
DEST[i+31:i] ← 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL/2] ← 0
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j ← 0 TO KL-1
i ← j * 32
k ← j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i] ←
Convert_UQuadInteger_To_Single_Precision_Floating_Point(SRC[63:0])
ELSE
DEST[i+31:i] ←
Convert_UQuadInteger_To_Single_Precision_Floating_Point(SRC[k+63:k])
FI;
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE
; zeroing-masking
DEST[i+31:i] ← 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL/2] ← 0
VCVTUQQ2PS __m256 _mm512_cvtepu64_ps( __m512i a);
VCVTUQQ2PS __m256 _mm512_mask_cvtepu64_ps( __m256 s, __mmask8 k, __m512i a);
VCVTUQQ2PS __m256 _mm512_maskz_cvtepu64_ps( __mmask8 k, __m512i a);
VCVTUQQ2PS __m256 _mm512_cvt_roundepu64_ps( __m512i a, int r);
VCVTUQQ2PS __m256 _mm512_mask_cvt_roundepu64_ps( __m256 s, __mmask8 k, __m512i a, int r);
VCVTUQQ2PS __m256 _mm512_maskz_cvt_roundepu64_ps( __mmask8 k, __m512i a, int r);
VCVTUQQ2PS __m128 _mm256_cvtepu64_ps( __m256i a);
VCVTUQQ2PS __m128 _mm256_mask_cvtepu64_ps( __m128 s, __mmask8 k, __m256i a);
VCVTUQQ2PS __m128 _mm256_maskz_cvtepu64_ps( __mmask8 k, __m256i a);
VCVTUQQ2PS __m128 _mm_cvtepu64_ps( __m128i a);
VCVTUQQ2PS __m128 _mm_mask_cvtepu64_ps( __m128 s, __mmask8 k, __m128i a);
VCVTUQQ2PS __m128 _mm_maskz_cvtepu64_ps( __mmask8 k, __m128i a);
Precision
EVEX-encoded instructions, see Exceptions Type E2.
#UD If EVEX.vvvv != 1111B.
Source: Intel® Architecture Software Developer's Manual (May 2018)
Generated: 5-6-2018