-
Notifications
You must be signed in to change notification settings - Fork 98
MOVDQU,VMOVDQU8_16_32_64
MOVDQU / VMOVDQU / VMOVDQU8 / VMOVDQU16 / VMOVDQU32 / VMOVDQU64 — Move Unaligned Packed Integer Values
Opcode/ Instruction | Op/En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
F3 0F 6F /r MOVDQU xmm1, xmm2/m128 | A | V/V | SSE2 | Move unaligned packed integer values from xmm2/m128 to xmm1. |
F3 0F 7F /r MOVDQU xmm2/m128, xmm1 | B | V/V | SSE2 | Move unaligned packed integer values from xmm1 to xmm2/m128. |
VEX.128.F3.0F.WIG 6F /r VMOVDQU xmm1, xmm2/m128 | A | V/V | AVX | Move unaligned packed integer values from xmm2/m128 to xmm1. |
VEX.128.F3.0F.WIG 7F /r VMOVDQU xmm2/m128, xmm1 | B | V/V | AVX | Move unaligned packed integer values from xmm1 to xmm2/m128. |
VEX.256.F3.0F.WIG 6F /r VMOVDQU ymm1, ymm2/m256 | A | V/V | AVX | Move unaligned packed integer values from ymm2/m256 to ymm1. |
VEX.256.F3.0F.WIG 7F /r VMOVDQU ymm2/m256, ymm1 | B | V/V | AVX | Move unaligned packed integer values from ymm1 to ymm2/m256. |
EVEX.128.F2.0F.W0 6F /r VMOVDQU8 xmm1 {k1}{z}, xmm2/m128 | C | V/V | AVX512VL AVX512BW | Move unaligned packed byte integer values from xmm2/m128 to xmm1 using writemask k1. |
EVEX.256.F2.0F.W0 6F /r VMOVDQU8 ymm1 {k1}{z}, ymm2/m256 | C | V/V | AVX512VL AVX512BW | Move unaligned packed byte integer values from ymm2/m256 to ymm1 using writemask k1. |
EVEX.512.F2.0F.W0 6F /r VMOVDQU8 zmm1 {k1}{z}, zmm2/m512 | C | V/V | AVX512BW | Move unaligned packed byte integer values from zmm2/m512 to zmm1 using writemask k1. |
EVEX.128.F2.0F.W0 7F /r VMOVDQU8 xmm2/m128 {k1}{z}, xmm1 | D | V/V | AVX512VL AVX512BW | Move unaligned packed byte integer values from xmm1 to xmm2/m128 using writemask k1. |
EVEX.256.F2.0F.W0 7F /r VMOVDQU8 ymm2/m256 {k1}{z}, ymm1 | D | V/V | AVX512VL AVX512BW | Move unaligned packed byte integer values from ymm1 to ymm2/m256 using writemask k1. |
EVEX.512.F2.0F.W0 7F /r VMOVDQU8 zmm2/m512 {k1}{z}, zmm1 | D | V/V | AVX512BW | Move unaligned packed byte integer values from zmm1 to zmm2/m512 using writemask k1. |
EVEX.128.F2.0F.W1 6F /r VMOVDQU16 xmm1 {k1}{z}, xmm2/m128 | C | V/V | AVX512VL AVX512BW | Move unaligned packed word integer values from xmm2/m128 to xmm1 using writemask k1. |
EVEX.256.F2.0F.W1 6F /r VMOVDQU16 ymm1 {k1}{z}, ymm2/m256 | C | V/V | AVX512VL AVX512BW | Move unaligned packed word integer values from ymm2/m256 to ymm1 using writemask k1. |
EVEX.512.F2.0F.W1 6F /r VMOVDQU16 zmm1 {k1}{z}, zmm2/m512 | C | V/V | AVX512BW | Move unaligned packed word integer values from zmm2/m512 to zmm1 using writemask k1. |
EVEX.128.F2.0F.W1 7F /r VMOVDQU16 xmm2/m128 {k1}{z}, xmm1 | D | V/V | AVX512VL AVX512BW | Move unaligned packed word integer values from xmm1 to xmm2/m128 using writemask k1. |
EVEX.256.F2.0F.W1 7F /r VMOVDQU16 ymm2/m256 {k1}{z}, ymm1 | D | V/V | AVX512VL AVX512BW | Move unaligned packed word integer values from ymm1 to ymm2/m256 using writemask k1. |
EVEX.512.F2.0F.W1 7F /r VMOVDQU16 zmm2/m512 {k1}{z}, zmm1 | D | V/V | AVX512BW | Move unaligned packed word integer values from zmm1 to zmm2/m512 using writemask k1. |
EVEX.128.F3.0F.W0 6F /r VMOVDQU32 xmm1 {k1}{z}, xmm2/m128 | C | V/V | AVX512VL AVX512F | Move unaligned packed doubleword integer values from xmm2/m128 to xmm1 using writemask k1. |
EVEX.256.F3.0F.W0 6F /r VMOVDQU32 ymm1 {k1}{z}, ymm2/m256 | C | V/V | AVX512VL AVX512F | Move unaligned packed doubleword integer values from ymm2/m256 to ymm1 using writemask k1. |
EVEX.512.F3.0F.W0 6F /r VMOVDQU32 zmm1 {k1}{z}, zmm2/m512 | C | V/V | AVX512F | Move unaligned packed doubleword integer values from zmm2/m512 to zmm1 using writemask k1. |
EVEX.128.F3.0F.W0 7F /r VMOVDQU32 xmm2/m128 {k1}{z}, xmm1 | D | V/V | AVX512VL AVX512F | Move unaligned packed doubleword integer values from xmm1 to xmm2/m128 using writemask k1. |
EVEX.256.F3.0F.W0 7F /r VMOVDQU32 ymm2/m256 {k1}{z}, ymm1 | D | V/V | AVX512VL AVX512F | Move unaligned packed doubleword integer values from ymm1 to ymm2/m256 using writemask k1. |
EVEX.512.F3.0F.W0 7F /r VMOVDQU32 zmm2/m512 {k1}{z}, zmm1 | D | V/V | AVX512F | Move unaligned packed doubleword integer values from zmm1 to zmm2/m512 using writemask k1. |
EVEX.128.F3.0F.W1 6F /r VMOVDQU64 xmm1 {k1}{z}, xmm2/m128 | C | V/V | AVX512VL AVX512F | Move unaligned packed quadword integer values from xmm2/m128 to xmm1 using writemask k1. |
EVEX.256.F3.0F.W1 6F /r VMOVDQU64 ymm1 {k1}{z}, ymm2/m256 | C | V/V | AVX512VL AVX512F | Move unaligned packed quadword integer values from ymm2/m256 to ymm1 using writemask k1. |
EVEX.512.F3.0F.W1 6F /r VMOVDQU64 zmm1 {k1}{z}, zmm2/m512 | C | V/V | AVX512F | Move unaligned packed quadword integer values from zmm2/m512 to zmm1 using writemask k1. |
EVEX.128.F3.0F.W1 7F /r VMOVDQU64 xmm2/m128 {k1}{z}, xmm1 | D | V/V | AVX512VL AVX512F | Move unaligned packed quadword integer values from xmm1 to xmm2/m128 using writemask k1. |
EVEX.256.F3.0F.W1 7F /r VMOVDQU64 ymm2/m256 {k1}{z}, ymm1 | D | V/V | AVX512VL AVX512F | Move unaligned packed quadword integer values from ymm1 to ymm2/m256 using writemask k1. |
EVEX.512.F3.0F.W1 7F /r VMOVDQU64 zmm2/m512 {k1}{z}, zmm1 | D | V/V | AVX512F | Move unaligned packed quadword integer values from zmm1 to zmm2/m512 using writemask k1. |
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
A | NA | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
B | NA | ModRM:r/m (w) | ModRM:reg (r) | NA | NA |
C | Full Mem | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
D | Full Mem | ModRM:r/m (w) | ModRM:reg (r) | NA | NA |
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD. EVEX encoded versions:
Moves 128, 256 or 512 bits of packed byte/word/doubleword/quadword integer values from the source operand (the second operand) to the destination operand (first operand). This instruction can be used to load a vector register from a memory location, to store the contents of a vector register into a memory location, or to move data between two vector registers. The destination operand is updated at 8-bit (VMOVDQU8), 16-bit (VMOVDQU16), 32-bit (VMOVDQU32), or 64-bit (VMOVDQU64) granularity according to the writemask. VEX.256 encoded version:
Moves 256 bits of packed integer values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load a YMM register from a 256-bit memory location, to store the contents of a YMM register into a 256-bit memory location, or to move data between two YMM registers.
Bits (MAXVL-1:256) of the destination register are zeroed.
128-bit versions:
Moves 128 bits of packed integer values from the source operand (second operand) to the destination operand (first operand). This instruction can be used to load an XMM register from a 128-bit memory location, to store the contents of an XMM register into a 128-bit memory location, or to move data between two XMM registers. 128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding destination register remain unchanged.
When the source or destination operand is a memory operand, the operand may be unaligned to any alignment without causing a general-protection exception (#GP) to be generated VEX.128 encoded version: Bits (MAXVL-1:128) of the destination register are zeroed.
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j ← 0 TO KL-1
i ← j * 8
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] ← SRC[i+7:i]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE DEST[i+7:i] ← 0
; zeroing-masking
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j ← 0 TO KL-1
i ← j * 8
IF k1[j] OR *no writemask*
THEN DEST[i+7:i]←
SRC[i+7:i]
ELSE *DEST[i+7:i] remains unchanged*
; merging-masking
FI;
ENDFOR;
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j ← 0 TO KL-1
i ← j * 8
IF k1[j] OR *no writemask*
THEN DEST[i+7:i] ← SRC[i+7:i]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE DEST[i+7:i] ← 0
; zeroing-masking
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j ← 0 TO KL-1
i ← j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] ← SRC[i+15:i]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE DEST[i+15:i] ← 0
; zeroing-masking
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j ← 0 TO KL-1
i ← j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i]←
SRC[i+15:i]
ELSE *DEST[i+15:i] remains unchanged*
; merging-masking
FI;
ENDFOR;
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j ← 0 TO KL-1
i ← j * 16
IF k1[j] OR *no writemask*
THEN DEST[i+15:i] ← SRC[i+15:i]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE DEST[i+15:i] ← 0
; zeroing-masking
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j ← 0 TO KL-1
i ← j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] ← SRC[i+31:i]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] ← 0
; zeroing-masking
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j ← 0 TO KL-1
i ← j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i]←
SRC[i+31:i]
ELSE *DEST[i+31:i] remains unchanged*
; merging-masking
FI;
ENDFOR;
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j ← 0 TO KL-1
i ← j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] ← SRC[i+31:i]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] ← 0
; zeroing-masking
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j ← 0 TO KL-1
i ← j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] ← SRC[i+63:i]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE DEST[i+63:i] ← 0
; zeroing-masking
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j ← 0 TO KL-1
i ← j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i]← SRC[i+63:i]
ELSE *DEST[i+63:i] remains unchanged*
; merging-masking
FI;
ENDFOR;
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j ← 0 TO KL-1
i ← j * 64
IF k1[j] OR *no writemask*
THEN DEST[i+63:i] ← SRC[i+63:i]
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE DEST[i+63:i] ← 0
; zeroing-masking
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0
DEST[255:0] ← SRC[255:0]
DEST[MAXVL-1:256] ← 0
DEST[255:0] ← SRC[255:0]
VMOVDQU (VEX.128 encoded version)
DEST[127:0] ← SRC[127:0]
DEST[MAXVL-1:128] ← 0
DEST[127:0] ← SRC[127:0]
DEST[MAXVL-1:128] (Unmodified)
DEST[127:0] ← SRC[127:0]
VMOVDQU16 __m512i _mm512_mask_loadu_epi16(__m512i s, __mmask32 k, void * sa);
VMOVDQU16 __m512i _mm512_maskz_loadu_epi16( __mmask32 k, void * sa);
VMOVDQU16 void _mm512_mask_storeu_epi16(void * d, __mmask32 k, __m512i a);
VMOVDQU16 __m256i _mm256_mask_loadu_epi16(__m256i s, __mmask16 k, void * sa);
VMOVDQU16 __m256i _mm256_maskz_loadu_epi16( __mmask16 k, void * sa);
VMOVDQU16 void _mm256_mask_storeu_epi16(void * d, __mmask16 k, __m256i a);
VMOVDQU16 __m128i _mm_mask_loadu_epi16(__m128i s, __mmask8 k, void * sa);
VMOVDQU16 __m128i _mm_maskz_loadu_epi16( __mmask8 k, void * sa);
VMOVDQU16 void _mm_mask_storeu_epi16(void * d, __mmask8 k, __m128i a);
VMOVDQU32 __m512i _mm512_loadu_epi32( void * sa);
VMOVDQU32 __m512i _mm512_mask_loadu_epi32(__m512i s, __mmask16 k, void * sa);
VMOVDQU32 __m512i _mm512_maskz_loadu_epi32( __mmask16 k, void * sa);
VMOVDQU32 void _mm512_storeu_epi32(void * d, __m512i a);
VMOVDQU32 void _mm512_mask_storeu_epi32(void * d, __mmask16 k, __m512i a);
VMOVDQU32 __m256i _mm256_mask_loadu_epi32(__m256i s, __mmask8 k, void * sa);
VMOVDQU32 __m256i _mm256_maskz_loadu_epi32( __mmask8 k, void * sa);
VMOVDQU32 void _mm256_storeu_epi32(void * d, __m256i a);
VMOVDQU32 void _mm256_mask_storeu_epi32(void * d, __mmask8 k, __m256i a);
VMOVDQU32 __m128i _mm_mask_loadu_epi32(__m128i s, __mmask8 k, void * sa);
VMOVDQU32 __m128i _mm_maskz_loadu_epi32( __mmask8 k, void * sa);
VMOVDQU32 void _mm_storeu_epi32(void * d, __m128i a);
VMOVDQU32 void _mm_mask_storeu_epi32(void * d, __mmask8 k, __m128i a);
VMOVDQU64 __m512i _mm512_loadu_epi64( void * sa);
VMOVDQU64 __m512i _mm512_mask_loadu_epi64(__m512i s, __mmask8 k, void * sa);
VMOVDQU64 __m512i _mm512_maskz_loadu_epi64( __mmask8 k, void * sa);
VMOVDQU64 void _mm512_storeu_epi64(void * d, __m512i a);
VMOVDQU64 void _mm512_mask_storeu_epi64(void * d, __mmask8 k, __m512i a);
VMOVDQU64 __m256i _mm256_mask_loadu_epi64(__m256i s, __mmask8 k, void * sa);
VMOVDQU64 __m256i _mm256_maskz_loadu_epi64( __mmask8 k, void * sa);
VMOVDQU64 void _mm256_storeu_epi64(void * d, __m256i a);
VMOVDQU64 void _mm256_mask_storeu_epi64(void * d, __mmask8 k, __m256i a);
VMOVDQU64 __m128i _mm_mask_loadu_epi64(__m128i s, __mmask8 k, void * sa);
VMOVDQU64 __m128i _mm_maskz_loadu_epi64( __mmask8 k, void * sa);
VMOVDQU64 void _mm_storeu_epi64(void * d, __m128i a);
VMOVDQU64 void _mm_mask_storeu_epi64(void * d, __mmask8 k, __m128i a);
VMOVDQU8 __m512i _mm512_mask_loadu_epi8(__m512i s, __mmask64 k, void * sa);
VMOVDQU8 __m512i _mm512_maskz_loadu_epi8( __mmask64 k, void * sa);
VMOVDQU8 void _mm512_mask_storeu_epi8(void * d, __mmask64 k, __m512i a);
VMOVDQU8 __m256i _mm256_mask_loadu_epi8(__m256i s, __mmask32 k, void * sa);
VMOVDQU8 __m256i _mm256_maskz_loadu_epi8( __mmask32 k, void * sa);
VMOVDQU8 void _mm256_mask_storeu_epi8(void * d, __mmask32 k, __m256i a);
VMOVDQU8 __m128i _mm_mask_loadu_epi8(__m128i s, __mmask16 k, void * sa);
VMOVDQU8 __m128i _mm_maskz_loadu_epi8( __mmask16 k, void * sa);
VMOVDQU8 void _mm_mask_storeu_epi8(void * d, __mmask16 k, __m128i a);
MOVDQU __m256i _mm256_loadu_si256 (__m256i * p);
MOVDQU _mm256_storeu_si256(_m256i *p, __m256i a);
MOVDQU __m128i _mm_loadu_si128 (__m128i * p);
MOVDQU _mm_storeu_si128(__m128i *p, __m128i a);
None
Non-EVEX-encoded instruction, see Exceptions Type 4; EVEX-encoded instruction, see Exceptions Type E4.nb.
#UD If EVEX.vvvv != 1111B or VEX.vvvv != 1111B.
Source: Intel® Architecture Software Developer's Manual (May 2018)
Generated: 5-6-2018