Skip to content

PMULHRSW

Henk-Jan Lebbink edited this page Jun 6, 2018 · 14 revisions

PMULHRSW — Packed Multiply High with Round and Scale

Opcode/ Instruction Op/ En 64/32 bit Mode Support CPUID Feature Flag Description
NP 0F 38 0B /r1 PMULHRSW mm1, mm2/m64 A V/V SSSE3 Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to mm1.
66 0F 38 0B /r PMULHRSW xmm1, xmm2/m128 A V/V SSSE3 Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to xmm1.
VEX.NDS.128.66.0F38.WIG 0B /r VPMULHRSW xmm1, xmm2, xmm3/m128 B V/V AVX Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to xmm1.
VEX.NDS.256.66.0F38.WIG 0B /r VPMULHRSW ymm1, ymm2, ymm3/m256 B V/V AVX2 Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to ymm1.
EVEX.NDS.128.66.0F38.WIG 0B /r VPMULHRSW xmm1 {k1}{z}, xmm2, xmm3/m128 C V/V AVX512VL AVX512BW Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to xmm1 under writemask k1.
EVEX.NDS.256.66.0F38.WIG 0B /r VPMULHRSW ymm1 {k1}{z}, ymm2, ymm3/m256 C V/V AVX512VL AVX512BW Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to ymm1 under writemask k1.
EVEX.NDS.512.66.0F38.WIG 0B /r VPMULHRSW zmm1 {k1}{z}, zmm2, zmm3/m512 C V/V AVX512BW Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to zmm1 under writemask k1.
  1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA
B NA ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) NA
C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

Description

PMULHRSW multiplies vertically each signed 16-bit integer from the destination operand (first operand) with the corresponding signed 16-bit integer of the source operand (second operand), producing intermediate, signed 32- bit integers. Each intermediate 32-bit integer is truncated to the 18 most significant bits. Rounding is always performed by adding 1 to the least significant bit of the 18-bit intermediate result. The final result is obtained by selecting the 16 bits immediately to the right of the most significant bit of each 18-bit intermediate result and packed to the destination operand.

When the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode and not encoded with VEX/EVEX, use the REX prefix to access XMM8-XMM15 registers.

Legacy SSE version 64-bit operand: Both operands can be MMX registers. The second source operand is an MMX register or a 64-bit memory location. 128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM destination register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the destination YMM register are zeroed.

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The first source and destination operands are YMM registers.

EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.

Operation

PMULHRSW (with 64-bit operands)

    temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
    temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
    temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >> 14) + 1;
    temp3[31:0] = INT32 ((DEST[63:48] * SRc[63:48]) >> 14) + 1;
    DEST[15:0] = temp0[16:1];
    DEST[31:16] = temp1[16:1];
    DEST[47:32] = temp2[16:1];
    DEST[63:48] = temp3[16:1];

PMULHRSW (with 128-bit operand)

    temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
    temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
    temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >>14) + 1;
    temp3[31:0] = INT32 ((DEST[63:48] * SRC[63:48]) >>14) + 1;
    temp4[31:0] = INT32 ((DEST[79:64] * SRC[79:64]) >>14) + 1;
    temp5[31:0] = INT32 ((DEST[95:80] * SRC[95:80]) >>14) + 1;
    temp6[31:0] = INT32 ((DEST[111:96] * SRC[111:96]) >>14) + 1;
    temp7[31:0] = INT32 ((DEST[127:112] * SRC[127:112) >>14) + 1;
    DEST[15:0] = temp0[16:1];
    DEST[31:16] = temp1[16:1];
    DEST[47:32] = temp2[16:1];
    DEST[63:48] = temp3[16:1];
    DEST[79:64] = temp4[16:1];
    DEST[95:80] = temp5[16:1];
    DEST[111:96] = temp6[16:1];
    DEST[127:112] = temp7[16:1];

VPMULHRSW (VEX.128 encoded version)

temp0[31:0] ← INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1
temp1[31:0] ← INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1
temp2[31:0] ← INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1
temp3[31:0] ← INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1
temp4[31:0] ← INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1
temp5[31:0] ← INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1
temp6[31:0] ← INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1
temp7[31:0] ← INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1
DEST[15:0] ← temp0[16:1]
DEST[31:16] ← temp1[16:1]
DEST[47:32] ← temp2[16:1]
DEST[63:48] ← temp3[16:1]
DEST[79:64] ← temp4[16:1]
DEST[95:80] ← temp5[16:1]
DEST[111:96] ← temp6[16:1]
DEST[127:112] ← temp7[16:1]
DEST[MAXVL-1:128] ← 0

VPMULHRSW (VEX.256 encoded version)

temp0[31:0] ← INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1
temp1[31:0] ← INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1
temp2[31:0] ← INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1
temp3[31:0] ← INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1
temp4[31:0] ← INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1
temp5[31:0] ← INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1
temp6[31:0] ← INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1
temp7[31:0] ← INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1
temp8[31:0] ← INT32 ((SRC1[143:128] * SRC2[143:128]) >>14) + 1
temp9[31:0] ← INT32 ((SRC1[159:144] * SRC2[159:144]) >>14) + 1
temp10[31:0] ← INT32 ((SRC1[75:160] * SRC2[175:160]) >>14) + 1
temp11[31:0] ← INT32 ((SRC1[191:176] * SRC2[191:176]) >>14) + 1
temp12[31:0] ← INT32 ((SRC1[207:192] * SRC2[207:192]) >>14) + 1
temp13[31:0] ← INT32 ((SRC1[223:208] * SRC2[223:208]) >>14) + 1
temp14[31:0] ← INT32 ((SRC1[239:224] * SRC2[239:224]) >>14) + 1
temp15[31:0] ← INT32 ((SRC1[255:240] * SRC2[255:240) >>14) + 1
DEST[15:0] ← temp0[16:1]
DEST[31:16] ← temp1[16:1]
DEST[47:32] ← temp2[16:1]
DEST[63:48] ← temp3[16:1]
DEST[79:64] ← temp4[16:1]
DEST[95:80] ← temp5[16:1]
DEST[111:96] ← temp6[16:1]
DEST[127:112] ← temp7[16:1]
DEST[143:128] ← temp8[16:1]
DEST[159:144] ← temp9[16:1]
DEST[175:160] ← temp10[16:1]
DEST[191:176] ← temp11[16:1]
DEST[207:192] ← temp12[16:1]
DEST[223:208] ← temp13[16:1]
DEST[239:224] ← temp14[16:1]
DEST[255:240] ← temp15[16:1]
DEST[MAXVL-1:256] ← 0

VPMULHRSW (EVEX encoded version)

(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j0 TO KL-1
    ij * 16
    IF k1[j] OR *no writemask*
        THEN 
            temp[31:0] ← ((SRC1[i+15:i] * SRC2[i+15:i]) >>14) + 1
            DEST[i+15:i] ← tmp[16:1]
        ELSE 
            IF *merging-masking*
                            ; merging-masking
                THEN *DEST[i+15:i] remains unchanged*
                ELSE *zeroing-masking*
                            ; zeroing-masking
                    DEST[i+15:i] ← 0
            FI
    FI;
ENDFOR
DEST[MAXVL-1:VL] ← 0

Intel C/C++ Compiler Intrinsic Equivalents

VPMULHRSW __m512i _mm512_mulhrs_epi16(__m512i a, __m512i b);
VPMULHRSW __m512i _mm512_mask_mulhrs_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);
VPMULHRSW __m512i _mm512_maskz_mulhrs_epi16( __mmask32 k, __m512i a, __m512i b);
VPMULHRSW __m256i _mm256_mask_mulhrs_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);
VPMULHRSW __m256i _mm256_maskz_mulhrs_epi16( __mmask16 k, __m256i a, __m256i b);
VPMULHRSW __m128i _mm_mask_mulhrs_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);
VPMULHRSW __m128i _mm_maskz_mulhrs_epi16( __mmask8 k, __m128i a, __m128i b);
PMULHRSW:  __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b)
(V)PMULHRSW: __m128i _mm_mulhrs_epi16 (__m128i a, __m128i b)
VPMULHRSW:__m256i _mm256_mulhrs_epi16 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions

None.

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type 4. EVEX-encoded instruction, see Exceptions Type E4.nb.


Source: Intel® Architecture Software Developer's Manual (May 2018)
Generated: 5-6-2018

Clone this wiki locally