-
Notifications
You must be signed in to change notification settings - Fork 98
VCVTPD2UDQ
VCVTPD2UDQ — Convert Packed Double-Precision Floating-Point Values to Packed Unsigned Doubleword Integers
Opcode Instruction | Op / En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
EVEX.128.0F.W1 79 /r VCVTPD2UDQ xmm1 {k1}{z}, xmm2/m128/m64bcst | A | V/V | AVX512VL AVX512F | Convert two packed double-precision floating-point values in xmm2/m128/m64bcst to two unsigned doubleword integers in xmm1 subject to writemask k1. |
EVEX.256.0F.W1 79 /r VCVTPD2UDQ xmm1 {k1}{z}, ymm2/m256/m64bcst | A | V/V | AVX512VL AVX512F | Convert four packed double-precision floating-point values in ymm2/m256/m64bcst to four unsigned doubleword integers in xmm1 subject to writemask k1. |
EVEX.512.0F.W1 79 /r VCVTPD2UDQ ymm1 {k1}{z}, zmm2/m512/m64bcst{er} | A | V/V | AVX512F | Convert eight packed double-precision floating-point values in zmm2/m512/m64bcst to eight unsigned doubleword integers in ymm1 subject to writemask k1. |
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
A | Full | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |
Converts packed double-precision floating-point values in the source operand (the second operand) to packed unsigned doubleword integers in the destination operand (the first operand).
When a conversion is inexact, the value returned is rounded according to the rounding control bits in the MXCSR register or the embedded rounding control bits. If a converted result cannot be represented in the destination format, the floating-point invalid exception is raised, and if this exception is masked, the integer value 2w – 1 is returned, where w represents the number of bits in the destination format.
The source operand is a ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1. The upper bits (MAXVL-1:256) of the corresponding destination are zeroed.
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1)
THEN
SET_RM(EVEX.RC);
ELSE
SET_RM(MXCSR.RM);
FI;
FOR j ← 0 TO KL-1
i ← j * 32
k ← j * 64
IF k1[j] OR *no writemask*
THEN
DEST[i+31:i] ←
Convert_Double_Precision_Floating_Point_To_UInteger(SRC[k+63:k])
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE
; zeroing-masking
DEST[i+31:i] ← 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL/2] ← 0
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j ← 0 TO KL-1
i ← j * 32
k ← j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1)
THEN
DEST[i+31:i] ←
Convert_Double_Precision_Floating_Point_To_UInteger(SRC[63:0])
ELSE
DEST[i+31:i] ←
Convert_Double_Precision_Floating_Point_To_UInteger(SRC[k+63:k])
FI;
ELSE
IF *merging-masking*
; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE
; zeroing-masking
DEST[i+31:i] ← 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL/2] ← 0
VCVTPD2UDQ __m256i _mm512_cvtpd_epu32( __m512d a);
VCVTPD2UDQ __m256i _mm512_mask_cvtpd_epu32( __m256i s, __mmask8 k, __m512d a);
VCVTPD2UDQ __m256i _mm512_maskz_cvtpd_epu32( __mmask8 k, __m512d a);
VCVTPD2UDQ __m256i _mm512_cvt_roundpd_epu32( __m512d a, int r);
VCVTPD2UDQ __m256i _mm512_mask_cvt_roundpd_epu32( __m256i s, __mmask8 k, __m512d a, int r);
VCVTPD2UDQ __m256i _mm512_maskz_cvt_roundpd_epu32( __mmask8 k, __m512d a, int r);
VCVTPD2UDQ __m128i _mm256_mask_cvtpd_epu32( __m128i s, __mmask8 k, __m256d a);
VCVTPD2UDQ __m128i _mm256_maskz_cvtpd_epu32( __mmask8 k, __m256d a);
VCVTPD2UDQ __m128i _mm_mask_cvtpd_epu32( __m128i s, __mmask8 k, __m128d a);
VCVTPD2UDQ __m128i _mm_maskz_cvtpd_epu32( __mmask8 k, __m128d a);
Invalid, Precision
EVEX-encoded instructions, see Exceptions Type E2.
#UD If EVEX.vvvv != 1111B.
Source: Intel® Architecture Software Developer's Manual (May 2018)
Generated: 5-6-2018