Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

GW170817 relative binning example script #49

Merged
merged 3 commits into from
Dec 6, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
140 changes: 140 additions & 0 deletions example/GW170817_heterodyne.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
from jimgw.jim import Jim
from jimgw.detector import H1, L1, V1
from jimgw.likelihood import HeterodynedTransientLikelihoodFD
from jimgw.waveform import RippleIMRPhenomD
from jimgw.prior import Uniform, Powerlaw, Composite
import jax.numpy as jnp
import jax
import time
jax.config.update("jax_enable_x64", True)


### Fetching the data

total_time_start = time.time()
gps = 1187008882.43
trigger_time = gps
fmin = 20
fmax = 2048
minimum_frequency = fmin
maximum_frequency = fmax
T = 128
duration = T
post_trigger_duration = 2
epoch = duration - post_trigger_duration
f_ref = fmin

### Getting ifos and overwriting with above data

tukey_alpha = 2 / (duration / 2)
H1.load_data(gps, duration, 2, fmin, fmax, psd_pad=duration+16, tukey_alpha=tukey_alpha)
L1.load_data(gps, duration, 2, fmin, fmax, psd_pad=duration+16, tukey_alpha=tukey_alpha)
V1.load_data(gps, duration, 2, fmin, fmax, psd_pad=duration+16, tukey_alpha=tukey_alpha)

### Define priors

# Internal parameters
Mc_prior = Uniform(1.18, 1.21, naming=["M_c"])
q_prior = Uniform(
0.125,
1.0,
naming=["q"],
transforms={"q": ("eta", lambda params: params["q"] / (1 + params["q"]) ** 2)},
)
s1z_prior = Uniform(-0.05, 0.05, naming=["s1_z"])
s2z_prior = Uniform(-0.05, 0.05, naming=["s2_z"])

# External parameters
dL_prior = Powerlaw(1.0, 75.0, 2.0, naming=["d_L"])
t_c_prior = Uniform(-0.1, 0.1, naming=["t_c"])
phase_c_prior = Uniform(0.0, 2 * jnp.pi, naming=["phase_c"])
cos_iota_prior = Uniform(
-1.0,
1.0,
naming=["cos_iota"],
transforms={
"cos_iota": (
"iota",
lambda params: jnp.arccos(
jnp.arcsin(jnp.sin(params["cos_iota"] / 2 * jnp.pi)) * 2 / jnp.pi
),
)
},
)
psi_prior = Uniform(0.0, jnp.pi, naming=["psi"])
ra_prior = Uniform(0.0, 2 * jnp.pi, naming=["ra"])
sin_dec_prior = Uniform(
-1.0,
1.0,
naming=["sin_dec"],
transforms={
"sin_dec": (
"dec",
lambda params: jnp.arcsin(
jnp.arcsin(jnp.sin(params["sin_dec"] / 2 * jnp.pi)) * 2 / jnp.pi
),
)
},
)

prior = Composite([
Mc_prior,
q_prior,
s1z_prior,
s2z_prior,
dL_prior,
t_c_prior,
phase_c_prior,
cos_iota_prior,
psi_prior,
ra_prior,
sin_dec_prior,
]
)

# The following only works if every prior has xmin and xmax property, which is OK for Uniform and Powerlaw
bounds = jnp.array([[p.xmin, p.xmax] for p in prior.priors]).T

### Create likelihood object
likelihood = HeterodynedTransientLikelihoodFD([H1, L1, V1], prior=prior, bounds=bounds, waveform=RippleIMRPhenomD(), trigger_time=gps, duration=T, n_bins=500)

### Create sampler and jim objects
eps = 3e-2
n_dim = 11
mass_matrix = jnp.eye(n_dim)
mass_matrix = mass_matrix.at[0,0].set(1e-5)
mass_matrix = mass_matrix.at[1,1].set(1e-4)
mass_matrix = mass_matrix.at[2,2].set(1e-3)
mass_matrix = mass_matrix.at[3,3].set(1e-3)
mass_matrix = mass_matrix.at[5,5].set(1e-5)
mass_matrix = mass_matrix.at[9,9].set(1e-2)
mass_matrix = mass_matrix.at[10,10].set(1e-2)
local_sampler_arg = {"step_size": mass_matrix * eps}

outdir_name = "./outdir/"

jim = Jim(
likelihood,
prior,
n_loop_pretraining=0,
n_loop_training=200,
n_loop_production=20,
n_local_steps=200,
n_global_steps=200,
n_chains=1000,
n_epochs=300,
learning_rate=0.001,
max_samples=50000,
momentum=0.9,
batch_size=50000,
use_global=True,
keep_quantile=0.0,
train_thinning=10,
output_thinning=30,
n_loops_maximize_likelihood = 2000,
local_sampler_arg=local_sampler_arg,
outdir_name=outdir_name
)

jim.sample(jax.random.PRNGKey(42))
jim.print_summary()
2 changes: 1 addition & 1 deletion src/jimgw/likelihood.py
Original file line number Diff line number Diff line change
Expand Up @@ -179,7 +179,7 @@ def __init__(
self.freq_grid_low = freq_grid[:-1]

print("Finding reference parameters..")

self.ref_params = self.maximize_likelihood(
bounds=bounds, prior=prior, popsize=popsize, n_loops=n_loops
)
Expand Down
Loading