Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: Adding documentations, tests, and amending algorithm for gcd_of_n_numbers.cpp #2766

Merged
merged 9 commits into from
Oct 7, 2024
131 changes: 102 additions & 29 deletions math/gcd_of_n_numbers.cpp
Original file line number Diff line number Diff line change
@@ -1,41 +1,114 @@
/**
* @file
* @brief This program aims at calculating the GCD of n numbers by division
* method
* @brief This program aims at calculating the GCD of n numbers
*
* @details
* The GCD of n numbers can be calculated by
* repeatedly calculating the GCDs of pairs of numbers
* i.e. \f$\gcd(a, b, c)\f$ = \f$\gcd(\gcd(a, b), c)\f$
* Euclidean algorithm helps calculate the GCD of each pair of numbers
* efficiently
*
* @see gcd_iterative_euclidean.cpp, gcd_recursive_euclidean.cpp
*/
#include <iostream>
#include <algorithm> /// for std::abs
#include <array> /// for std::array
#include <cassert> /// for assert
#include <iostream> /// for IO operations

/** Compute GCD using division algorithm
*
* @param[in] a array of integers to compute GCD for
* @param[in] n number of integers in array `a`
*/
int gcd(int *a, int n) {
int j = 1; // to access all elements of the array starting from 1
int gcd = a[0];
while (j < n) {
if (a[j] % gcd == 0) // value of gcd is as needed so far
j++; // so we check for next element
else
gcd = a[j] % gcd; // calculating GCD by division method
/**
* @namespace math
* @brief Maths algorithms
*/
namespace math {
/**
* @namespace gcd_of_n_numbers
* @brief Compute GCD of numbers in an array
*/
namespace gcd_of_n_numbers {
/**
* @brief Function to compute GCD of 2 numbers x and y
* @param x First number
* @param y Second number
* @return GCD of x and y via recursion
*/
int gcd_two(int x, int y) {
// base cases
if (y == 0) {
return x;
}
if (x == 0) {
return y;
}
return gcd_two(y, x % y); // Euclidean method
}

/**
* @brief Function to check if all elements in the array are 0
* @param a Array of numbers
* @return 'True' if all elements are 0
* @return 'False' if not all elements are 0
*/
template <std::size_t n>
bool check_all_zeros(const std::array<int, n> &a) {
// Use std::all_of to simplify zero-checking
return std::all_of(a.begin(), a.end(), [](int x) { return x == 0; });
}

/**
* @brief Main program to compute GCD using the Euclidean algorithm
* @param a Array of integers to compute GCD for
* @return GCD of the numbers in the array or std::nullopt if undefined
*/
template <std::size_t n>
int gcd(const std::array<int, n> &a) {
// GCD is undefined if all elements in the array are 0
if (check_all_zeros(a)) {
return -1; // Use std::optional to represent undefined GCD
}

// divisors can be negative, we only want the positive value
int result = std::abs(a[0]);
for (std::size_t i = 1; i < n; ++i) {
result = gcd_two(result, std::abs(a[i]));
if (result == 1) {
break; // Further computations still result in gcd of 1
}
return gcd;
}
return result;
}
} // namespace gcd_of_n_numbers
} // namespace math

/** Main function */
int main() {
int n;
std::cout << "Enter value of n:" << std::endl;
std::cin >> n;
int *a = new int[n];
int i;
std::cout << "Enter the n numbers:" << std::endl;
for (i = 0; i < n; i++) std::cin >> a[i];
/**
* @brief Self-test implementation
* @return void
*/
static void test() {
std::array<int, 1> array_1 = {0};
std::array<int, 1> array_2 = {1};
std::array<int, 2> array_3 = {0, 2};
std::array<int, 3> array_4 = {-60, 24, 18};
std::array<int, 4> array_5 = {100, -100, -100, 200};
std::array<int, 5> array_6 = {0, 0, 0, 0, 0};
std::array<int, 7> array_7 = {10350, -24150, 0, 17250, 37950, -127650, 51750};
std::array<int, 7> array_8 = {9500000, -12121200, 0, 4444, 0, 0, 123456789};

std::cout << "GCD of entered n numbers:" << gcd(a, n) << std::endl;
assert(math::gcd_of_n_numbers::gcd(array_1) == -1);
assert(math::gcd_of_n_numbers::gcd(array_2) == 1);
assert(math::gcd_of_n_numbers::gcd(array_3) == 2);
assert(math::gcd_of_n_numbers::gcd(array_4) == 6);
assert(math::gcd_of_n_numbers::gcd(array_5) == 100);
assert(math::gcd_of_n_numbers::gcd(array_6) == -1);
assert(math::gcd_of_n_numbers::gcd(array_7) == 3450);
assert(math::gcd_of_n_numbers::gcd(array_8) == 1);
}

delete[] a;
return 0;
/**
* @brief Main function
* @return 0 on exit
*/
int main() {
test(); // run self-test implementation
return 0;
}
Loading