Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix mixed results of rouge_score with accumulate='best' #2830

Merged
merged 15 commits into from
Nov 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 1 addition & 4 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -50,13 +50,10 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0

- Removed `num_outputs` in `R2Score` ([#2800](https://github.com/Lightning-AI/torchmetrics/pull/2800))


### Fixed

-

- Fixed mixed results of `rouge_score` with `accumulate='best'` ([#2830](https://github.com/Lightning-AI/torchmetrics/pull/2830))

---

## [1.5.2] - 2024-11-07

Expand Down
9 changes: 3 additions & 6 deletions src/torchmetrics/functional/text/rouge.py
Original file line number Diff line number Diff line change
Expand Up @@ -362,12 +362,9 @@ def _rouge_score_update(
list_results.append(result_inner.copy())

if accumulate == "best":
key_curr = rouge_keys_values[0]
all_fmeasure = torch.tensor([v[key_curr]["fmeasure"] for v in list_results])
highest_idx = int(torch.argmax(all_fmeasure).item())

for rouge_key in rouge_keys_values:
results[rouge_key].append(list_results[highest_idx][rouge_key]) # todo
for k in rouge_keys_values:
index = torch.argmax(torch.tensor([s[k]["fmeasure"] for s in list_results]))
results[k].append(list_results[index][k])

elif accumulate == "avg":
new_result_avg: dict[Union[int, str], dict[str, Tensor]] = {
Expand Down
63 changes: 59 additions & 4 deletions tests/unittests/text/test_rouge.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,10 +75,12 @@ def _reference_rouge_score(
aggregator_avg = BootstrapAggregator()

if accumulate == "best":
key_curr = next(iter(list_results[0].keys()))
all_fmeasure = torch.tensor([v[key_curr].fmeasure for v in list_results])
highest_idx = torch.argmax(all_fmeasure).item()
aggregator.add_scores(list_results[highest_idx])
scores = {}
for rouge_key in list_results[0]:
all_fmeasure = torch.tensor([v[rouge_key].fmeasure for v in list_results])
highest_idx = torch.argmax(all_fmeasure).item()
scores[rouge_key] = list_results[highest_idx][rouge_key]
aggregator.add_scores(scores)
elif accumulate == "avg":
for _score in list_results:
aggregator_avg.add_scores(_score)
Expand Down Expand Up @@ -270,3 +272,56 @@ def test_rouge_lsum_score(pl_rouge_metric_key, use_stemmer):
use_stemmer=use_stemmer,
)
assert torch.isclose(metrics_score[rouge_level + "_" + metric], original_score)


@pytest.mark.parametrize(
("preds", "references", "expected_scores"),
[
(
"a b c",
["a b c", "c b a"],
{
"rouge1_fmeasure": 1.0,
"rouge1_precision": 1.0,
"rouge1_recall": 1.0,
"rouge2_fmeasure": 1.0,
"rouge2_precision": 1.0,
"rouge2_recall": 1.0,
"rougeL_fmeasure": 1.0,
"rougeL_precision": 1.0,
"rougeL_recall": 1.0,
"rougeLsum_fmeasure": 1.0,
"rougeLsum_precision": 1.0,
"rougeLsum_recall": 1.0,
},
),
(
"a b c",
["c b a", "a b c"],
{
"rouge1_fmeasure": 1.0,
"rouge1_precision": 1.0,
"rouge1_recall": 1.0,
"rouge2_fmeasure": 1.0,
"rouge2_precision": 1.0,
"rouge2_recall": 1.0,
"rougeL_fmeasure": 1.0,
"rougeL_precision": 1.0,
"rougeL_recall": 1.0,
"rougeLsum_fmeasure": 1.0,
"rougeLsum_precision": 1.0,
"rougeLsum_recall": 1.0,
},
),
],
)
def test_rouge_score_accumulate_best(preds, references, expected_scores):
"""Issue: https://github.com/Lightning-AI/torchmetrics/issues/2148."""
# Calculate ROUGE scores
result = rouge_score(preds, references, accumulate="best")

# Assert each expected score
for key in expected_scores:
assert torch.isclose(
result[key], torch.tensor(expected_scores[key])
), f"Expected {expected_scores[key]} for {key}, but got {result[key]}"
Loading