Open-source code-release for paper "Trust the PRoC3S: Solving Long-Horizon Robotics Problems with LLMs and Constraint Satisfaction".
Please reach out to Aidan Curtis ([email protected]) and Nishanth Kumar ([email protected]) with any questions!
conda create -n "proc3s" python=3.10
conda activate proc3s
python -m pip install -e .
echo "OPENAI_KEY='<YOUR-KEY-HERE>'" > .env
The main run file is eval_policy.py
. Running a particular domain involves simply creating a config file in the vtamp/config
directory and running eval_policy.py
using the --config-dir .
and --config_name
flags.
Here are a few example commands to give you an idea:
# Our approach on a task with goal "draw a rectangle that encloses two obstacles".
python eval_policy.py --config-dir . --config-name=proc3s_draw_star.yaml
# Code as Policies on a RAVENS task with goal "Put three blocks in a line flat on the table"
python eval_policy.py --config-dir=. --config-name=cap_draw_star.yaml
# LLM^3 on a RAVENS task with goal "Put three blocks in a line flat on the table"
python eval_policy.py --config-dir=. --config-name=llm3_draw_star.yaml
To reproduce full paper experiments, see the experiments config folder here
To turn on caching for llm responses, use the +policy.use_cache=true
flag. e.g.:
python eval_policy.py --config-dir=. --config-name=ours_raven.yaml +policy.use_cache=true
Finally, to visualize constraint checking, use the vis_debug=true
flag. e.g.:
python eval_policy.py --config-dir=. --config-name=ours_raven.yaml vis_debug=true ++render=True