Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ENH: Max CAPPI #1633

Merged
merged 19 commits into from
Aug 30, 2024
Merged
Show file tree
Hide file tree
Changes from 13 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
111 changes: 111 additions & 0 deletions examples/plotting/plot_max_cappi.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,111 @@
"""
=============
Plot Max-CAPPI
=============

This is an example of how to plot a Max-CAPPI
within a Py-ART grid display object.

"""

print(__doc__)

# Author: Hamid Ali Syed ([email protected])
# License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np

import pyart
from pyart.testing import get_test_data

#########################################
# ** MAX-CAPPI Display
#

# Define and Read in the test data
grid_file = get_test_data("20110520100000_nexrad_grid.nc")
grid = pyart.io.read_grid(grid_file)


# Create a grid display
gdisplay = pyart.graph.GridMapDisplay(grid)
gdisplay.plot_maxcappi(field="REF", range_rings=True, add_slogan=True)


#########################################
# ** Second Example
#
# Let's read in a cfradial file and create a grid.


import logging
from datetime import datetime

import fsspec
import pytz


def download_nexrad(timezone, date, site, local_date=False):
"""Download NEXRAD radar data from an S3 bucket."""
try:
utc_date = (
pytz.timezone(timezone).localize(date).astimezone(pytz.utc)
if local_date
else date
)
logging.info(f"Time: {utc_date}")

fs = fsspec.filesystem("s3", anon=True)
nexrad_path = utc_date.strftime(
f"s3://noaa-nexrad-level2/%Y/%m/%d/{site}/{site}%Y%m%d_%H*"
)
files = sorted(fs.glob(nexrad_path))

return [file for file in files if not file.endswith("_MDM")]
except Exception as e:
logging.error("Error in processing: %s", e)
return []


# Load NEXRAD data from S3 Bucket
site = "PHWA"
timezone = "UTC"
date = datetime(2024, 8, 25, 8, 29)

# Correctly passing the site and timezone
file = download_nexrad(timezone, date, site, local_date=False)[0]


# Read the data using nexrad_archive reader
radar = pyart.io.read_nexrad_archive("s3://" + file)

# Create a 3D grid
# Mask out last 10 gates of each ray, this removes the "ring" around the radar.
radar.fields["reflectivity"]["data"][:, -10:] = np.ma.masked

# Exclude masked gates from the gridding
gatefilter = pyart.filters.GateFilter(radar)
gatefilter.exclude_transition()
gatefilter.exclude_masked("reflectivity")
gatefilter.exclude_outside("reflectivity", 10, 80)

# Perform Cartesian mapping, limit to the reflectivity field.
max_range = np.ceil(radar.range["data"].max())
if max_range / 1e3 > 250:
max_range = 250 * 1e3

grid = pyart.map.grid_from_radars(
(radar,),
gatefilters=(gatefilter,),
grid_shape=(30, 441, 441),
grid_limits=((0, 10000), (-max_range, max_range), (-max_range, max_range)),
fields=["reflectivity"],
)

# Create a grid display
gdisplay = pyart.graph.GridMapDisplay(grid)
with plt.style.context("dark_background"):
gdisplay.plot_maxcappi(
field="reflectivity", cmap="pyart_HomeyerRainbow", add_slogan=True
)
143 changes: 102 additions & 41 deletions pyart/core/grid.py
Original file line number Diff line number Diff line change
Expand Up @@ -320,68 +320,129 @@ def to_xarray(self):
x, y, z : dict, 1D
Distance from the grid origin for each Cartesian coordinate axis
in a one dimensional array.

"""

if not _XARRAY_AVAILABLE:
raise MissingOptionalDependency(
"Xarray is required to use Grid.to_xarray but is not " + "installed!"
"Xarray is required to use Grid.to_xarray but is not installed!"
)

def _process_radar_name(radar_name):
"""Process radar_name to handle different formats."""
if radar_name.dtype.kind in {"S", "U"} and radar_name.ndim > 1:
return np.array([b"".join(radar_name.flatten())])
return radar_name

lon, lat = self.get_point_longitude_latitude()
z = self.z["data"]
y = self.y["data"]
x = self.x["data"]

time = np.array([num2date(self.time["data"][0], self.time["units"])])
time = np.array([num2date(self.time["data"][0], units=self.time["units"])])

ds = xarray.Dataset()
for field in list(self.fields.keys()):
field_data = self.fields[field]["data"]
for field, field_info in self.fields.items():
field_data = field_info["data"]
data = xarray.DataArray(
np.ma.expand_dims(field_data, 0),
dims=("time", "z", "y", "x"),
coords={
"time": (["time"], time),
"z": (["z"], z),
"time": time,
"z": z,
"lat": (["y", "x"], lat),
"lon": (["y", "x"], lon),
"y": (["y"], y),
"x": (["x"], x),
"y": y,
"x": x,
},
)
for meta in list(self.fields[field].keys()):
if meta != "data":
data.attrs.update({meta: self.fields[field][meta]})

data.attrs.update({k: v for k, v in field_info.items() if k != "data"})
ds[field] = data
ds.lon.attrs = [
("long_name", "longitude of grid cell center"),
("units", "degree_E"),
("standard_name", "Longitude"),
]
ds.lat.attrs = [
("long_name", "latitude of grid cell center"),
("units", "degree_N"),
("standard_name", "Latitude"),
]

ds.z.attrs = get_metadata("z")
ds.y.attrs = get_metadata("y")
ds.x.attrs = get_metadata("x")

ds.z.encoding["_FillValue"] = None
ds.lat.encoding["_FillValue"] = None
ds.lon.encoding["_FillValue"] = None

# Grab original radar(s) name and number of radars used to make grid
ds.attrs["nradar"] = self.nradar
ds.attrs["radar_name"] = self.radar_name

# Grab all metadata
ds.attrs.update(self.metadata)

ds.close()

ds.lon.attrs = {
"long_name": "longitude of grid cell center",
"units": "degree_E",
"standard_name": "Longitude",
}
ds.lat.attrs = {
"long_name": "latitude of grid cell center",
"units": "degree_N",
"standard_name": "Latitude",
}

for attr in [ds.z, ds.lat, ds.lon]:
attr.encoding["_FillValue"] = None

from ..io.grid_io import _make_coordinatesystem_dict

ds.coords["ProjectionCoordinateSystem"] = xarray.DataArray(
data=np.array(1, dtype="int32"),
attrs=_make_coordinatesystem_dict(self),
)

projection = self.projection.copy()
if "_include_lon_0_lat_0" in projection:
projection["_include_lon_0_lat_0"] = str(
projection["_include_lon_0_lat_0"]
).lower()
ds.coords["projection"] = xarray.DataArray(
data=np.array(1, dtype="int32"),
attrs=projection,
)

for attr_name in [
"origin_latitude",
"origin_longitude",
"origin_altitude",
"radar_altitude",
"radar_latitude",
"radar_longitude",
"radar_time",
]:
if hasattr(self, attr_name):
attr_data = getattr(self, attr_name)
if attr_data is not None:
dims = ("time",) if "origin_" in attr_name else ("nradar",)
attr_value = (
np.ma.expand_dims(attr_data["data"][0], 0)
if "radar_time" not in attr_name
else [
np.array(
num2date(
attr_data["data"][0], units=attr_data["units"]
),
dtype="datetime64[ns]",
)
]
)
ds.coords[attr_name] = xarray.DataArray(
attr_value, dims=dims, attrs=get_metadata(attr_name)
)

if "radar_time" in ds.variables:
ds.radar_time.attrs.pop("calendar")

if self.radar_name is not None:
radar_name = _process_radar_name(self.radar_name["data"])
ds["radar_name"] = xarray.DataArray(
radar_name, dims=("nradar"), attrs=get_metadata("radar_name")
)
else:
radar_name = np.array(
["ExampleRadar"], dtype="S"
) # or use 'U' for unicode strings

# Add radar_name to attributes, defaulting to 'ExampleRadar' if radar_name doesn't exist or is empty
ds.attrs["radar_name"] = (
radar_name.item() if radar_name.size > 0 else "ExampleRadar"
)
ds.attrs["nradar"] = self.nradar
ds.attrs.update(self.metadata)
for key in ds.attrs:
try:
ds.attrs[key] = ds.attrs[key].decode("utf-8")
except AttributeError:
pass

ds.close()
return ds

def add_field(self, field_name, field_dict, replace_existing=False):
Expand Down
2 changes: 2 additions & 0 deletions pyart/graph/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,5 +62,7 @@
from .radardisplay_airborne import AirborneRadarDisplay # noqa
from .radarmapdisplay import RadarMapDisplay # noqa
from .radarmapdisplay_basemap import RadarMapDisplayBasemap # noqa
from . import max_cappi # noqa
syedhamidali marked this conversation as resolved.
Show resolved Hide resolved
from .max_cappi import plot_maxcappi # noqa

__all__ = [s for s in dir() if not s.startswith("_")]
Loading
Loading