Skip to content

Tensorflow implementation of conditional Generative Adversarial Networks (cGAN) and conditional Deep Convolutional Adversarial Networks (cDCGAN) for MANIST dataset.

Notifications You must be signed in to change notification settings

znxlwm/tensorflow-MNIST-cGAN-cDCGAN

Repository files navigation

tensorflow-MNIST-cGAN-cDCGAN

Tensorflow implementation of conditional Generative Adversarial Networks (cGAN) [1] and conditional Deep Convolutional Generative Adversarial Networks (cDCGAN) for MANIST [2] dataset.

Implementation details

  • cGAN

GAN

Resutls

  • Generate using fixed noise (fixed_z_)
cGAN cDCGAN
  • MNIST vs Generated images
MNIST cGAN after 100 epochs cDCGAN after 30 epochs
  • Training loss
cGAN cDCGAN
  • Learning time
    • MNIST cGAN - Avg. per epoch: 3.21 sec; Total 100 epochs: 1800.37 sec
    • MNIST cDCGAN - Avg. per epoch: 53.07 sec; Total 30 epochs: 2072.29 sec

Development Environment

  • Windows 7
  • GTX1080 ti
  • cuda 8.0
  • Python 3.5.3
  • tensorflow-gpu 1.2.1
  • numpy 1.13.1
  • matplotlib 2.0.2
  • imageio 2.2.0

Reference

[1] Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial nets." arXiv preprint arXiv:1411.1784 (2014).

(Full paper: https://arxiv.org/pdf/1411.1784.pdf)

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998.

About

Tensorflow implementation of conditional Generative Adversarial Networks (cGAN) and conditional Deep Convolutional Adversarial Networks (cDCGAN) for MANIST dataset.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages