Skip to content

zachrewolinski/senseweight

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

senseweight

senseweight implements a set of sensitivity functions and tools to help researchers transparently conduct sensitivity analyses for weighted estimators. senseweight allows researchers to assess the sensitivity present in their weighted estimates to omitted confounders. Specific methods provided in senseweight include the following: (1) visualization tools to summarize sensitivity; (2) summary tables containing necessary sensitivity statistics; (3) formal benchmarking methods which allow researchers to use observed covariates to assess the plausibility of different confounders.

Installation

You can install the development version of senseweight from GitHub with:

# install.packages("devtools")
devtools::install_github("melodyyhuang/senseweight")

Citation

Huang, Melody. “Sensitivity Analysis in the Generalization of Experimental Results.” arXiv preprint arXiv:2202.03408 (2022).

Basic Usage

The example below illustrates how to use the senseweight package for external validity. Examples of how to use senseweight for internal validity or survey weighting are forthcoming.

library(senseweight)

#Load in JTPA data: 
data(jtpa_women)
#Summarize sites
jtpa_women %>%
    group_by(site) %>%
        summarize(
            length(prevearn),
            mean(prevearn),
            mean(age),
            mean(married),
            mean(hrwage),
            mean(black),
            mean(hispanic),
            mean(hsorged),
            mean(yrs_educ)
        )
#> # A tibble: 16 x 10
#>    site  `length(prevearn)` `mean(prevearn)` `mean(age)` `mean(married)`
#>    <chr>              <int>            <dbl>       <dbl>           <dbl>
#>  1 CC                   524            1855.        32.1          0.219 
#>  2 CI                   190            2250.        33.5          0.253 
#>  3 CV                   788            2192.        33.6          0.278 
#>  4 HF                   234            1997.        31.6          0.184 
#>  5 IN                  1392            3172.        34.9          0.193 
#>  6 JC                    81            2564.        30.6          0.136 
#>  7 JK                   353            1928.        30.0          0.113 
#>  8 LC                   485            3039.        33.9          0.258 
#>  9 MD                   177            2915.        34.6          0.181 
#> 10 MN                   179            2215.        37.6          0.352 
#> 11 MT                    38            1680.        33.8          0.395 
#> 12 NE                   636            2161.        31.7          0.0975
#> 13 OH                    74            2568.        34.6          0.324 
#> 14 OK                    87            2320.        37.3          0.126 
#> 15 PR                   463            1783.        32.8          0.0842
#> 16 SM                   401            2997.        32.2          0.284 
#> # … with 5 more variables: mean(hrwage) <dbl>, mean(black) <dbl>,
#> #   mean(hispanic) <dbl>, mean(hsorged) <dbl>, mean(yrs_educ) <dbl>

Assume researchers are interested in generalizing the results from the site of Omaha, Nebraska to the other 15 experimental sites:

site_name="NE"
df_site = jtpa_women[which(jtpa_women$site == site_name),]
df_else = jtpa_women[which(jtpa_women$site != site_name),]

#Estimate unweighted estimator: 
model_dim = estimatr::lm_robust(Y~T, data = df_site)
PATE = coef(lm(Y~T, data = df_else))[2]
DiM = coef(model_dim)[2]

#Generate weights using observed covariates:
df_all = jtpa_women
df_all$S = ifelse(jtpa_women$site == "NE", 1, 0)
model_ps = WeightIt::weightit((1-S)~.-site-T-Y, data = df_all, method='ebal', estimand="ATT")
weights = model_ps$weights[df_all$S==1]

#Estimate IPW model: 
model_ipw = estimatr::lm_robust(Y~T, data = df_site, weights=weights)
ipw=coef(model_ipw)[2]

#Estimate bound for var(tau):
m = sqrt(var(df_site$Y[df_site$T==1])/var(df_site$Y[df_site$T==0]))
#Since m > 1:
vartau = var(df_site$Y[df_site$T==1])-var(df_site$Y[df_site$T==0])

Sensitivity Summary Measures

We can generate the sensitivity summary measures using the summarize_sensitivity function:

summarize_sensitivity(weights=weights, Y=df_site$Y, Z=df_site$T, sigma2 = vartau, estimand='PATE')
#>   Unweighted Estimate      SE   RV sigma_tau_bound cor_w
#> Z    1107.35  1356.89 1417.21 0.36          2897.9  0.07

The summarize_sensitivity function defaults to evaluating the robustness value at q=1, indicating a robustness value, relative to a bias equal to the point estimate. Researchers can specify different values for q in the function. In the generalization setting, researchers can modify the sigma2 bound and posit their own values for a plausible bound (given substantive justification). With no specification, sigma2 will be automatically calculated to be bound by var(Y(1)) + var(Y(0)).

Individual components of the sensitivity summaries can be computed as well:

#Calculate robustness value:
RV = robustness_value(q=1, ipw, vartau, weights)
print(RV)
#> [1] 0.4114544

Formal Benchmarking:

#Select weighting variables: 
weighting_vars = names(df_all)[which(!names(df_all) %in% c("site", "S", "Y", "T"))]

#Run bechmarking: 
df_benchmark = run_benchmarking(weighting_vars, data = df_all[,-1], 
                 treatment="T", outcome = "Y",selection = "S", 
                 estimate=ipw, 
                 RV = RV, sigma2=vartau, 
                 estimand = "PATE")

print(df_benchmark)
#>   variable R2_benchmark rho_benchmark    bias   MRCS k_sigma_min k_rho_min
#> 1 prevearn         0.04          0.59  310.90   4.36       10.01      1.08
#> 2      age         0.06          0.75  479.06   2.83        6.91      0.85
#> 3  married         0.11          0.19  170.96   7.94        3.83      3.29
#> 4   hrwage         0.05         -0.42 -244.46  -5.55        8.34     -1.51
#> 5    black         0.20         -0.49 -628.02  -2.16        2.03     -1.30
#> 6 hispanic         0.14         -0.10  -96.86 -14.01        3.02     -6.66
#> 7  hsorged         0.12          0.08   74.17  18.29        3.50      7.98
#> 8 yrs_educ         0.00          0.27   21.60  62.83      403.43      2.40

Generating the Bias Contour Plots

contour_plot(var(weights), vartau, ipw, df_benchmark, benchmark=TRUE, shade=TRUE,
    shade_var = c("age", "prevearn"))+
    geom_point(aes(x = RV, y=sqrt(RV))) +
    annotate("text", x = RV-0.01, y = sqrt(RV)+0.02, 
        label=expression(RV[1]*"= 0.41"), hjust=0, vjust=0, size=3)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 100.0%