Skip to content

PyTorch reimplementation of RegNet (Design Space Design, CVPR2020) on CIFAR10 and ImageNet

License

Notifications You must be signed in to change notification settings

yhhhli/RegNet-Pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RegNet-Pytorch

Designing Network Design Spaces

image-20200427104303632

Prerequisite

Pytorch 1.1.0+

thop to calculate the flops and params

CIFAR10

cd $PATH-TO-THIS-REPO/CIFAR10

For CIFAR10 models, the stride for the first stage is set to 1, so that the input size for the last stage won't become to small (2x2). The STEM part does not contain max pooling layer.

Run the following command to train a regnet from scratch, (add -e to evaluate the pre-trained model)

python main.py -a regnet_200m 

Here is the summary for the accuracy, params and macs.

Models FLOPs (10^6) Params (10^6) Hyper-params Accuracy
RegNet-200M 62 2.31 batch128_wd0.0001_cos300epoch_lr0.1 93.58
RegNet-400M 126 4.77 batch128_wd0.0001_cos300epoch_lr0.1 94.15
RegNet-600M 192 5.67 batch128_wd0.0001_cos300epoch_lr0.1 94.73
RegNet-800M 258 6.60 batch128_wd0.0001_cos300epoch_lr0.1 95.01
RegNet-1.6G 522 8.28 batch128_wd0.0001_cos300epoch_lr0.1 95.45
RegNet-3.2G 1038 14.3 batch128_wd0.0001_cos300epoch_lr0.1 95.53
RegNet-4G 1298 20.8 batch128_wd0.0001_cos300epoch_lr0.1 95.69
RegNet-6.4G 2108 24.6 batch128_wd0.0001_cos300epoch_lr0.1 96.20

ImageNet

For imagenet models, we keep the model and training configuration exactly the same with the original released codes. We train the model using pytorch framework, and the summary of the results is shown below.

Models FLOPs (10^6) Params (10^6) Hyper-params Accuracy (Paper) Accuracy (Ours)
RegNet-200M 208 2.68 batch1k_wd0.00005_cos100epoch_lr0.8 68.9 68.1
RegNet-400M 410 5.15 batch1k_wd0.00005_cos100epoch_lr0.8 72.7 72.24
RegNet-600M 618 6.19 batch1k_wd0.00005_cos100epoch_lr0.8 74.1 73.94
RegNet-800M 820 7.25 batch1k_wd0.00005_cos100epoch_lr0.8 75.2 75.13
RegNet-1.6G 1635 9.19 batch512_wd0.00005_cos100epoch_lr0.4 77.0 77.09
RegNet-3.2G 3233 15.3 batch512_wd0.00005_cos100epoch_lr0.4 78.3 78.54
RegNet-4G 4014 22.1 batch512_wd0.00005_cos100epoch_lr0.4 78.6 79.09
RegNet-6.4G 6527 26.2 batch512_wd0.00005_cos100epoch_lr0.4 79.2 79.36

Note: we only uploaded regnet_200MF, 400MF, 600MF in this repo. Other pretrained models can be found in here. Use pretrained = True to load the pre-trained models.

About

PyTorch reimplementation of RegNet (Design Space Design, CVPR2020) on CIFAR10 and ImageNet

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages