Skip to content
/ gim Public

GIM: Learning Generalizable Image Matcher From Internet Videos (ICLR 2024 Spotlight)

License

Notifications You must be signed in to change notification settings

xuelunshen/gim

Repository files navigation

English Chinese

GIM: Learning Generalizable Image Matcher From Internet Videos

ICLR 2024 Spotlight Project Page arxiv HuggingFace Space Overview Video GitHub Repo stars

Intel Intel Intel

✅ TODO List

  • ZEB: Zero-shot Evaluation Benchmark
  • Inference code
    • gim_roma
    • gim_dkm
    • gim_loftr
    • gim_lightglue
  • Training code

We are actively continuing with the remaining open-source work and appreciate everyone's attention.

🤗 Online demo

Go to Huggingface to quickly try our model online.

⚙️ Environment

I set up the running environment on a new machine using the commands listed below.

[ Click to show commands ]
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge
pip install albumentations==1.0.1 --no-binary=imgaug,albumentations
pip install pytorch-lightning==1.5.10
pip install opencv-python==4.5.3.56
pip install imagesize==1.2.0
pip install kornia==0.6.10
pip install einops==0.3.0
pip install loguru==0.5.3
pip install joblib==1.0.1
pip install yacs==0.1.8
pip install h5py==3.1.0

🔨 Usage

  1. Clone the repository
git clone https://github.com/xuelunshen/gim.git
cd gim
  1. Download gim_dkm model weight from Google Drive

  2. Put it on the folder weights

  3. Run the following commands

[ Click to show commands ]
python demo.py --model gim_dkm

or

python demo.py --model gim_loftr

or

python demo.py --model gim_lightglue

  1. The code will match a1.png and a2.png in the folder assets/demo,
    and output a1_a2_match.png and a1_a2_warp.png.
[ Click to show a1.png and a2.png ]

[ Click to show a1_a2_match.png ]

a1_a2_match.png is a visualization of the match between the two images

[ Click to show a1_a2_warp.png ]

a1_a2_warp.png shows the effect of projecting image a2 onto image a1 using homography

There are more images in the `assets/demo` folder, you can try them out.

[ Click to show other images ]

📊 ZEB: Zero-shot Evaluation Benchmark

  1. Create a folder named zeb.
  2. Download zip archives containing the ZEB data from the URL, put it into the zeb folder and unzip zip archives.
  3. Run the following commands

[ Click to show commands ]

The number 1 below represents the number of GPUs you want to use. If you want to use 2 GPUs, change the number 1 to 2.

sh TEST_GIM_DKM.sh 1

or

sh TEST_GIM_LOFTR.sh 1

or

sh TEST_GIM_LIGHTGLUE.sh 1

or

sh TEST_ROOT_SIFT.sh 1

  1. Run the command python check.py to check if everything outputs "Good".
  2. Run the command python analysis.py --dir dump/zeb --wid gim_dkm --version 100h --verbose to get result.
  3. Paste the ZEB result to the Excel file named zeb.xlsx.

[ Click to show ZEB Result ]

The data in this table comes from the ZEB: Zero-shot Evaluation Benchmark for Image Matching proposed in the paper. This benchmark consists of 12 public datasets that cover a variety of scenes, weather conditions, and camera models, corresponding to the 12 test sequences starting from GL3 in the table.

Method
Mean
AUC@5°
(%) ↑
GL3 BLE ETI ETO KIT WEA SEA NIG MUL SCE ICL GTA
Handcrafted
RootSIFT 31.8 43.5 33.6 49.9 48.7 35.2 21.4 44.1 14.7 33.4 7.6 14.8 35.1
Sparse Matching
SuperGlue (in) 21.6 19.2 16.0 38.2 37.7 22.0 20.8 40.8 13.7 21.4 0.8 9.6 18.8
SuperGlue (out) 31.2 29.7 24.2 52.3 59.3 28.0 28.4 48.0 20.9 33.4 4.5 16.6 29.3
GIM_SuperGlue
(50h)
34.3 43.2 34.2 58.7 61.0 29.0 28.3 48.4 18.8 34.8 2.8 15.4 36.5
LightGlue 31.7 28.9 23.9 51.6 56.3 32.1 29.5 48.9 22.2 37.4 3.0 16.2 30.4
GIM_LightGlue
(100h)
38.3 46.6 38.1 61.7 62.9 34.9 31.2 50.6 22.6 41.8 6.9 19.0 43.4
Semi-dense Matching
LoFTR (in) 10.7 5.6 5.1 11.8 7.5 17.2 6.4 9.7 3.5 22.4 1.3 14.9 23.4
LoFTR (out) 33.1 29.3 22.5 51.1 60.1 36.1 29.7 48.6 19.4 37.0 13.1 20.5 30.3
GIM_LoFTR
(50h)
39.1 50.6 43.9 62.6 61.6 35.9 26.8 47.5 17.6 41.4 10.2 25.6 45.0
GIM_LoFTR
(100h)
ToDO
Dense Matching
DKM (in) 46.2 44.4 37.0 65.7 73.3 40.2 32.8 51.0 23.1 54.7 33.0 43.6 55.7
DKM (out) 45.8 45.7 37.0 66.8 75.8 41.7 33.5 51.4 22.9 56.3 27.3 37.8 52.9
GIM_DKM
(50h)
49.4 58.3 47.8 72.7 74.5 42.1 34.6 52.0 25.1 53.7 32.3 38.8 60.6
GIM_DKM
(100h)
51.2 63.3 53.0 73.9 76.7 43.4 34.6 52.5 24.5 56.6 32.2 42.5 61.6
RoMa (in) 46.7 46.0 39.3 68.8 77.2 36.5 31.1 50.4 20.8 57.8 33.8 41.7 57.6
RoMa (out) 48.8 48.3 40.6 73.6 79.8 39.9 34.4 51.4 24.2 59.9 33.7 41.3 59.2
GIM_RoMa ToDO

📌 Citation

If the paper and code from gim help your research, we kindly ask you to give a citation to our paper ❤️. Additionally, if you appreciate our work and find this repository useful, giving it a star ⭐️ would be a wonderful way to support our work. Thank you very much.

@inproceedings{
xuelun2024gim,
title={GIM: Learning Generalizable Image Matcher From Internet Videos},
author={Xuelun Shen and Zhipeng Cai and Wei Yin and Matthias Müller and Zijun Li and Kaixuan Wang and Xiaozhi Chen and Cheng Wang},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024}
}

🌟 Star History

Star History Chart

License

This repository is under the MIT License. This content/model is provided here for research purposes only. Any use beyond this is your sole responsibility and subject to your securing the necessary rights for your purpose.

About

GIM: Learning Generalizable Image Matcher From Internet Videos (ICLR 2024 Spotlight)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published