Steps:
Process the public dataset CAVE:
-
Run ./data/png2mat.m to convert PNG files to MAT files;
-
Run ./data/data_label.m to creating training/test data and generating HR-MSI;
-
Run ./data/mat2tif.m to convert MAT files to TIF files;
Train and test the two-stream fusion network TSFN:
-
Run train.py to train the TSFN;
-
Run test.py to test the TSFN;
Run ./enhancement/enhance_adaptive.m to obtain the final HR-HSI estimation.
For any questions, feel free to email me at [email protected].
If you find this code helpful, please kindly cite:
@article{wang2021hyperspectral,
title={Hyperspectral image super-resolution via deep prior regularization with parameter estimation},
author={Wang, Xiuheng and Chen, Jie and Wei, Qi and Richard, C{\'e}dric},
journal={IEEE Transactions on Circuits and Systems for Video Technology},
volume={32},
number={4},
pages={1708--1723},
year={2021},
publisher={IEEE}
}