Skip to content

A python implementation of linear classification algorithm (including Probabilistic Generative Model, Probabilistic Discriminative Model). (See Pattern Recognition and Machine Learning, Bishop)

License

Notifications You must be signed in to change notification settings

williamd4112/simple-linear-classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Introduction

This project is implementation of Probabilistic Generative Model and Probabilistic Discriminative Model for multi-class classification. (see Pattern Recognition and Machine Learning, Bishop 2006) Classifcation task can be splitted into two stages - inference and decision. Probabilistic Generative Model solve class posteriror via solving class conditional probabilities and class priors. Probabilistic Discriminative Model solve directly optimize linear combination weight with Iterative Reweighted Least Squares (IRLS) - Newton-Raphson to find class posteriror. All datas are processed with Principle Component Analysis (PCA) or Linear Discriminant Analysis (LDA).

Dependencies

  • numpy v1.12
  • tqdm
  • OpenCV

Dataset

Database of Faces ( AT&T Laboratories Cambridge)
Reference : http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

Results

Best error rate of each model

Probabilistic Generative Model Probabilistic Discriminative Model
0.025 0.0

Visualization (Decision boundary)

Probabilistic Generative Model Probabilistic Discriminative Model
gen dis

To train the model (examples)

Training scripts use default training data in data/class*.npy and default training hyperparameters. If you want to use your own data, please see the manual of main.py

./train_generative.sh {model output path}
./train_dicriminative.sh {model output path}
./train_dicriminative_lda.sh {model output path}

To validate the model (examples)

./validate_generative.sh
./validate_dicriminative.sh 
./validate_dicriminative_lda.sh 

To test the model (examples)

./test.sh {model input} {result output} {testing data} {model type [dis|gen]}

e.g.
./test.sh model/model-dis data/class1.npy,data/class2.npy,data/class3.npy dis

To run demo

./demo.sh {model input} {model type [dis|gen]}

e.g.
./demo.sh model/model-dis dis

[04/11/2017 02:06:24 AM] Convert images at ./Demo to data/demo.npy
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 600/600 [00:00<00:00, 76795.31it/s]
Demo images convertion done
[04/11/2017 02:06:24 AM] Load 600 data from ./data/demo.npy
[04/11/2017 02:06:24 AM] Loading stddev from model/model-dis_std.npy ...
[04/11/2017 02:06:24 AM] Loading basis from model/model-dis_basis.npy ...
[04/11/2017 02:06:24 AM] Loading model from model/model-dis.npy success [K = 3, M = 3]
[04/11/2017 02:06:24 AM] Use model dis with 3-dim (with bias) feautre space
[04/11/2017 02:06:24 AM] Converting to one-hot ...
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 600/600 [00:00<00:00, 908841.60it/s]
[04/11/2017 02:06:24 AM] Writing result to ./result/DemoTarget.csv ...
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 600/600 [00:00<00:00, 263848.02it/s]

About

A python implementation of linear classification algorithm (including Probabilistic Generative Model, Probabilistic Discriminative Model). (See Pattern Recognition and Machine Learning, Bishop)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published