env.yml
Our model stress\models\sm2vec.py
vis_barbell.py embedding visualization on barbell graph
vis_karate.py embedding visualization on karate network
evaluate_synthetic.py node clustering experiments on synthetic graphs (default: 'varied' setting)
evaluate_brazil.py node classification experiments on the brazil air-traffic networks
evaluate_europe.py node classification experiments on the europe air-traffic networks
evaluate_usa.py node classification experiments on the usa air-traffic networks
This code is built upon the code of the following paper:
Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. "Learning Structural Node Embeddings via Diffusion Wavelets." KDD 2018. https://github.com/snap-stanford/graphwave
Ribeiro, Leonardo FR, Pedro HP Saverese, and Daniel R. Figueiredo. "struc2vec: Learning node representations from structural identity." KDD 2017. https://github.com/shenweichen/GraphEmbedding
If you find this useful, please use the following citation
@inproceedings{wang2021,
title={Embedding Node Structural Role Identity Using Stress Majorization},
author={Wang, Lili and Huang, Chenghan and Ma, Weicheng and Lu, Ying and Vosoughi, Soroush},
booktitle={Proceedings of the 30th ACM International Conference on Information \& Knowledge Management},
year={2021}
}