Skip to content

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Networks for Diverse and Limited Data. DeLiGAN is a simple but effective modification of the GAN framework and aims to improve performance on datasets which are diverse yet small in size.

License

Notifications You must be signed in to change notification settings

val-iisc/deligan

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 

Repository files navigation

DeLiGAN

alt text

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Networks for Diverse and Limited Data. Via this project, we make two contributions:

  1. We propose a simple but effective modification of the GAN framework for settings where training data is diverse yet small in size.
  2. We propose a modification of inception-score proposed by Salimans et al. Our modified inception-score provides a single, unified measure of inter-class and intra-class variety in samples generated by a GAN.

Dependencies

The code for DeLiGAN is provided in Tensorflow 0.10 for the MNIST and Toy dataset, and in Theano 0.8.2 + Lasagne 0.2 for the CIFAR-10 and Sketches dataset. This code was tested on a Ubuntu 14.04 workstation hosting a NVIDIA Titan X GPU.

Datasets

This repository includes implementations for 4 different datasets.

  1. Toy (self generated unimodal and bimodal gaussians)
  2. MNIST (http://www.cs.toronto.edu/~gdahl/mnist.npz.gz)
  3. CIFAR-10 (https://www.cs.toronto.edu/~kriz/cifar.html)
  4. Sketches (http://cybertron.cg.tu-berlin.de/eitz/projects/classifysketch/)

The models for evaluating DeLiGAN on these datasets can be found in our repo. The details for how to download and lay out the datasets can be found in src/datasets/README.md

Usage

Training DeLiGAN models

To run any of the models

  • First download the datasets and store them in the respective sub-folder of the datasets folder (src/datasets/)
  • To run the model on any of the datasets, go to the respective src folders and run the dg_'dataset'.py file in the respective dataset folders with two arguments namely, --data_dir and --results_dir. For example, starting from the top-level folder,
cd src/sketches 
python dg_sketches.py --data_dir ../datasets/sketches/ --results_dir ../results/sketches
  • Note that the results_dir needs to have 'train' as a sub-folder.

Modified inception score

For example, to obtain the modified inception scores on CIFAR

  • Download the inception-v3 model (http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz.) and store it in src/modified_inception_scores/cifar10/
  • Generate samples using the model trained in the dg_cifar.py and copy it to src/modified_inception_scores/cifar10/
  • Run transfer_cifar10_softmax_b1.py to transfer learn the last layer.
  • Perform the modifications detailed in the comments in transfer_cifar10_softmax_b1.py and re-run it to evaluate the inception scores.
  • The provided code can be modified slightly to work for sketches as well by following the comments provided in transfer_cifar10_softmax_b1.py

Parts of the code in this implementation have been borrowed from the Improved-GAN implementation by OpenAI (T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training gans. In Advances in Neural Information Processing Systems, pages 2226–2234, 2016.)

Cite

@inproceedings{DeLiGAN17,
  author = {Gurumurthy, Swaminathan and Sarvadevabhatla, Ravi Kiran and R. Venkatesh Babu},
  title = {DeLiGAN : Generative Adversarial Networks for Diverse and Limited Data},
  booktitle = {Proceedings of the 2017 Conference on Computer Vision and Pattern Recognition},
  location = {Honolulu, Hawaii, USA}
 }

Q&A

Please send message to [email protected] if you have any query regarding the code.

About

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Networks for Diverse and Limited Data. DeLiGAN is a simple but effective modification of the GAN framework and aims to improve performance on datasets which are diverse yet small in size.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages