Skip to content

tunz/transformer-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Transformer

This is a pytorch implementation of the Transformer model like tensorflow/tensor2tensor.

Prerequisite

I tested it with PyTorch 1.0.0 and Python 3.6.8.

It's using SpaCy to tokenize languages for wmt32k dataset. So, if you want to run wmt32k problem which is a de/en translation dataset, you should download language models first with the following command.

$ pip install spacy
$ python -m spacy download en
$ python -m spacy download de

Usage

  1. Train a model.
$ python train.py --problem wmt32k --output_dir ./output --data_dir ./wmt32k_data
or
$ python train.py --problem lm1b --output_dir ./output --data_dir ./lm1b_data

If you want to try fast_transformer, give a model argument after installing tcop-pytorch.

$ python train.py --problem lm1b --output_dir ./output --data_dir ./lm1b_data --model fast_transformer
  1. You can translate a single sentence with the trained model.
$ python decoder.py --translate --data_dir ./wmt32k_data --model_dir ./output/last/models

About

Transformer implementation in PyTorch.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages