Skip to content

tunib-ai/tunib-electra

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 

Repository files navigation

TUNiB-Electra

We release several new versions of the ELECTRA model, which we name TUNiB-Electra. There are two motivations. First, all the existing pre-trained Korean encoder models are monolingual, that is, they have knowledge about Korean only. Our bilingual models are based on the balanced corpora of Korean and English. Second, we want new off-the-shelf models trained on much more texts. To this end, we collected a large amount of Korean text from various sources such as blog posts, comments, news, web novels, etc., which sum up to 100 GB in total.

You can use TUNiB-Electra with the Hugging Face transformers library.

What's New:

How to use

You can use this model directly with transformers library:

from transformers import AutoModel, AutoTokenizer

# Small Model (Korean-English bilingual model)
tokenizer = AutoTokenizer.from_pretrained('tunib/electra-ko-en-small')
model = AutoModel.from_pretrained('tunib/electra-ko-en-small')

# Base Model (Korean-English bilingual model)
tokenizer = AutoTokenizer.from_pretrained('tunib/electra-ko-en-base')
model = AutoModel.from_pretrained('tunib/electra-ko-en-base')

# Small Model (Korean-only model)
tokenizer = AutoTokenizer.from_pretrained('tunib/electra-ko-small')
model = AutoModel.from_pretrained('tunib/electra-ko-small')

# Base Model (Korean-only model)
tokenizer = AutoTokenizer.from_pretrained('tunib/electra-ko-base')
model = AutoModel.from_pretrained('tunib/electra-ko-base')

Tokenizer example

>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained('tunib/electra-ko-en-base')
>>> tokenizer.tokenize("tunib is a natural language processing tech startup.")
['tun', '##ib', 'is', 'a', 'natural', 'language', 'processing', 'tech', 'startup', '.']
>>> tokenizer.tokenize("튜닙은 자연어처리 테크 스타트업입니다.")
['튜', '##닙', '##은', '자연', '##어', '##처리', '테크', '스타트업', '##입니다', '.']

Results on Korean downstream tasks

Small Models

# Params Avg. NSMC
(acc)
Naver NER
(F1)
PAWS
(acc)
KorNLI
(acc)
KorSTS
(spearman)
Question Pair
(acc)
KorQuaD (Dev)
(EM/F1)
Korean-Hate-Speech (Dev)
(F1)
TUNiB-Electra-ko-small 14M 81.29 89.56 84.98 72.85 77.08 78.76 94.98 61.17 / 87.64 64.50
TUNiB-Electra-ko-en-small 18M 81.44 89.28 85.15 75.75 77.06 77.61 93.79 80.55 / 89.77 63.13
KoELECTRA-small-v3 14M 82.58 89.36 85.40 77.45 78.60 80.79 94.85 82.11 / 91.13 63.07

Base Models

# Params Avg. NSMC
(acc)
Naver NER
(F1)
PAWS
(acc)
KorNLI
(acc)
KorSTS
(spearman)
Question Pair
(acc)
KorQuaD (Dev)
(EM/F1)
Korean-Hate-Speech (Dev)
(F1)
TUNiB-Electra-ko-base 110M 85.99 90.95 87.63 84.65 82.27 85.00 95.77 64.01 / 90.32 71.40
TUNiB-Electra-ko-en-base 133M 85.34 90.59 87.25 84.90 80.43 83.81 94.85 83.09 / 92.06 68.83
KoELECTRA-base-v3 110M 85.92 90.63 88.11 84.45 82.24 85.53 95.25 84.83 / 93.45 67.61
KcELECTRA-base 124M 84.75 91.71 86.90 74.80 81.65 82.65 95.78 70.60 / 90.11 74.49
KoBERT-base 90M 81.92 89.63 86.11 80.65 79.00 79.64 93.93 52.81 / 80.27 66.21
KcBERT-base 110M 79.79 89.62 84.34 66.95 74.85 75.57 93.93 60.25 / 84.39 68.77
XLM-Roberta-base 280M 83.03 89.49 86.26 82.95 79.92 79.09 93.53 64.70 / 88.94 64.06

Results on English downstream tasks

Small Models

# Params Avg. CoLA
(MCC)
SST
(Acc)
MRPC
(Acc)
STS
(Spearman)
QQP
(Acc)
MNLI
(Acc)
QNLI
(Acc)
RTE
(Acc)
TUNiB-Electra-ko-en-small 18M 80.44 56.76 88.76 88.73 86.12 88.66 79.03 87.26 68.23
ELECTRA-small 13M 79.71 55.6 91.1 84.9 84.6 88.0 81.6 88.3 63.6
BERT-small 13M 74.06 27.8 89.7 83.4 78.8 87.0 77.6 86.4 61.8

Base Models

# Params Avg. CoLA
(MCC)
SST
(Acc)
MRPC
(Acc)
STS
(Spearman)
QQP
(Acc)
MNLI
(Acc)
QNLI
(Acc)
RTE
(Acc)
TUNiB-Electra-ko-en-base 133M 85.2 65.36 92.09 88.97 90.61 90.91 85.32 91.51 76.53
ELECTRA-base 110M 85.7 64.6 96.0 88.1 90.2 89.5 88.5 93.1 75.2
BERT-base 110M 80.8 52.1 93.5 84.8 85.8 89.2 84.6 90.5 66.4

Pre-training data

Acknowledgement

The project was created with Cloud TPU support from the Tensorflow Research Cloud (TFRC) program.

Citation

If you find this code/model useful, please consider citing:

@misc{tunib-electra,
  author       = {Ha, Sangchun and Kim, Soohwan and Ryu, Myeonghyeon and
                  Keum, Bitna and Oh, Saechan and Ko, Hyunwoong and Park, Kyubyong},
  title        = {TUNiB-Electra},
  howpublished = {\url{https://github.com/tunib-ai/tunib-electra}},
  year         = {2021},
}

License

TUNiB-Electra is licensed under the terms of the Apache 2.0 License.

Copyright 2021 TUNiB Inc. http://www.tunib.ai All Rights Reserved.

Releases

No releases published

Packages

No packages published