TLS2trees
segments individual trees from TLS point clouds. This is done using a 3-step process
This step preprocesses data captured with RIEGL VZ TLS data. Code and details can be found here.
This is forked from @SKrisanski and is a lite version that only runs the semantic segmentation (ground, wood, leaf, cwd). Typical usage is:
python semantic.py -p <point_cloud> --tile-index <path_to_index> --buffer <buffer> --verbose
optional arguments:
-h, --help show this help message and exit
--point-cloud POINT_CLOUD, -p POINT_CLOUD
path to point cloud
--params PARAMS path to pickled parameter file
--odir ODIR output directory
--step STEP which process to run to
--redo REDO which process to run to
--tile-index TILE_INDEX
path to tile index in space delimited format "TILE X Y"
--buffer BUFFER included data from neighbouring tiles
--batch_size BATCH_SIZE
If you get CUDA errors, try lowering this.
--num_procs NUM_PROCS
Number of CPU cores you want to use. If you run out of RAM, lower this.
--keep-npy Keeps .npy files used for segmentation after inference is finished.
--output_fmt OUTPUT_FMT
file type of output
--verbose print stuff
Following classification an instance segmenation can be run to seperate individual trees using:
python instance.py -t 001.downsample.segmented.ply --tindex ../tile_index.dat -o ../clouds/ --n-tiles 5 --slice-thickness .5 --find-stems-boundary 2 2.5 --pandarallel --verbose --add-leaves --add-leaves-voxel-length .5 --graph-maximum-cumulative-gap 3 --save-diameter-class --ignore-missing-tiles
optional arguments:
-h, --help show this help message and exit
--tile TILE, -t TILE fsct directory
--odir ODIR, -o ODIR output directory
--tindex TINDEX path to tile index
--n-tiles N_TILES enlarges the number of tiles i.e. 3x3 or tiles or 5 x 5 tiles
--n-zeros leading zeros for tile names
--overlap OVERLAP buffer to crop adjacent tiles
--slice-thickness SLICE_THICKNESS
slice thickness for constructing graph
--find-stems-boundary boundary height for slice used for identifying stems: default [1.5, 2.]:w
--find-stems-min-radius FIND_STEMS_MIN_RADIUS
minimum radius of found stems
--find-stems-min-points FIND_STEMS_MIN_POINTS
minimum number of points for found stems
--graph-edge-length GRAPH_EDGE_LENGTH
maximum distance used to connect points in graph
--graph-maximum-cumulative-gap GRAPH_MAXIMUM_CUMULATIVE_GAP
maximum cumulative distance between a base and a cluster
--min-points-per-tree MIN_POINTS_PER_TREE
minimum number of points for a identified tree
--add-leaves add leaf points
--add-leaves-voxel-length ADD_LEAVES_VOXEL_LENGTH
voxel sixe when add leaves
--add-leaves-edge-length ADD_LEAVES_EDGE_LENGTH
maximum distance used to connect points in leaf graph
--save-diameter-class
save into dimeter class directories
--ignore-missing-tiles
ignore missing neighbouring tiles
--pandarallel use pandarallel
--verbose print something
To build a Docker container with all the libraries installed use:
docker build -t tls2trees:latest .
Then to run FSCT and the instance segmentation use:
docker run -it -v /path/to/data/outsidecontainer:/path/to/data/incontainer fsct:latest semantic.py
docker run -it -v /path/to/data/outsidecontainer:/path/to/data/incontainer fsct:latest instance.py
For HPC systems, where you don't have permission to run Docker, you can build the container on your local machine and convert to a singularity file using:
sudo singularity build tls2trees_latest.sif docker-daemon://tls2trees:latest
Copy this to the HPC system and run this using
singularity exec tls2trees_latest.sif semantic.py
singularity exec tls2trees_latest.sif instance.py