Skip to content

Commit

Permalink
24_SP_TA: add
Browse files Browse the repository at this point in the history
  • Loading branch information
tiankaima committed Apr 17, 2024
1 parent bc7e029 commit 4be7f60
Show file tree
Hide file tree
Showing 2 changed files with 172 additions and 24 deletions.
Binary file added 2bc0c8-2024_spring_TA/imgs/8.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
196 changes: 172 additions & 24 deletions 2bc0c8-2024_spring_TA/main.typ
Original file line number Diff line number Diff line change
Expand Up @@ -142,12 +142,12 @@ $
=== 10(3)

$
u(x,y,z)&=sin(x)sin(y)sin(z)\
U(x,y,z,phi)&=sin(x)sin(y)sin(z)-phi dot.c(x+y+z-pi/2)\
u(x,y,z)&=sin x sin y sin z\
U(x,y,z,phi)&=sin x sin y sin z -phi dot.c(x+y+z-pi/2)\
&dcases(
(diff U)/(diff x) &= cos(x)sin(y)sin(z)-phi=0\
(diff U)/(diff y) &= sin(x)cos(y)sin(z)-phi=0\
(diff U)/(diff z) &= sin(x)sin(y)cos(z)-phi=0\
(diff U)/(diff x) &= cos x sin y sin z -phi=0\
(diff U)/(diff y) &= sin x cos y sin z -phi=0\
(diff U)/(diff z) &= sin x sin y cos z -phi=0\
&x+y+z=pi/2\
)
$
Expand All @@ -166,7 +166,7 @@ $
极大值极小值的判断不能直接从拉格朗日乘子法中得到, 应该通过如下方法判断:

$
u(x,y)=u(x,y,z)=u(x,y,pi / 2-x-y)=sin(x)sin(y)cos(x+y)\
u(x,y)=u(x,y,z)=u(x,y,pi / 2-x-y)=sin x sin y cos(x+y)\
$

接下来继续处理 $Delta=(diff^2 u)/(diff x^2) dot.c (diff^2 u)/(diff y^2)-((diff^2 u)/(diff x diff y))^2$, 按照一般的二元函数的处理 (#strike[也许可以从头开始就按照这样的做法]), 最终可以获得结果.
Expand All @@ -177,8 +177,8 @@ $
更一般的, 我们可以做如下处理:

$
u&=sin(x)sin(y)sin(z)\
dif u&=cos(x)sin(y)sin(z)dif x + sin(x)cos(y)sin(z)dif y + sin(x)sin(y)cos(z)dif z\
u&=sin x sin y sin z \
dif u&=cos x sin y sin z dif x + sin x cos y sin z dif y + sin x sin y cos z dif z\
$
]

Expand All @@ -191,12 +191,12 @@ $
]

$
=> & dif u = (cos(x)sin(y)sin(z) - sin(x)sin(y)cos(z))dif x + (sin(x)cos(y)sin(z) - sin(x)sin(y)cos(z))dif y\
=> & (diff u) / (diff x)=(cos(x)sin(y)sin(z) - sin(x)sin(y)cos(z))=0\
=> & (diff u) / (diff y)=(sin(x)cos(y)sin(z) - sin(x)sin(y)cos(z))=0\
=> & (diff^2 u) / (diff x^2)= -2sin(x)sin(y)sin(z) - 2cos(x)sin(y)cos(z)=-1\
=> & (diff^2 u) / (diff y^2) = -2sin(x)sin(y)sin(z) - 2sin(x)cos(y)cos(z)=-1\
=> & (diff^2 u) / (diff x diff y) = cos(x)cos(y)sin(z) - sin(x)cos(y)cos(z) - cos(x)sin(y)cos(z) - sin(x)sin(y)sin(z)=-1 / 2\
=> & dif u = (cos x sin y sin z - sin x sin y cos z )dif x + (sin x cos y sin z - sin x sin y cos z )dif y\
=> & (diff u) / (diff x)=cos x sin y sin z - sin x sin y cos z=0\
=> & (diff u) / (diff y)=sin x cos y sin z - sin x sin y cos z=0\
=> & (diff^2 u) / (diff x^2)= -2sin x sin y sin z - 2cos x sin y cos z =-1\
=> & (diff^2 u) / (diff y^2) = -2sin x sin y sin z - 2sin x cos y cos z =-1\
=> & (diff^2 u) / (diff x diff y) = cos x cos y sin z - sin x cos y cos z - cos x sin y cos z - sin x sin y sin z =-1 / 2\
$

所以有
Expand All @@ -205,7 +205,7 @@ Delta = A C - B^2 = 3 / 4 >0 space.quad A=-1<0
$
正定, 最大值 $ u(pi/6,pi/6,pi/6)=1/8 $

下图是 $u(x,y,z)=sin(x)sin(y)sin(z)$ 的热力图,通过颜色来反应无法画出的另一维度的信息.
下图是 $u(x,y,z)=sin x sin y sin z $ 的热力图,通过颜色来反应无法画出的另一维度的信息.
#image("imgs/5.png", width: 50%)

#pagebreak()
Expand Down Expand Up @@ -369,15 +369,15 @@ $
=== 11(3)

$
&z=sin(x)+sin(y)-sin(x+y) quad D={(x,y)mid("|")x>=0,y>=0,x+y<=2pi} \
&z=sin x +sin y -sin(x+y) quad D={(x,y)mid("|")x>=0,y>=0,x+y<=2pi} \
$

区域内的情况:

$
&dcases(
(diff z)/(diff x) &= cos(x)-cos(x+y) = 0 \
(diff z)/(diff y) &= cos(y)-cos(x+y) = 0 \
(diff z)/(diff x) &= cos x -cos(x+y) = 0 \
(diff z)/(diff y) &= cos y -cos(x+y) = 0 \
) \
&P_1(0,0) quad P_2(2pi,0) quad P_3(0,2pi) quad P_4(pi/3, pi/3)
Expand All @@ -396,11 +396,11 @@ $
其中 $l_1, l_2$ 是对称的,我们只考虑 $l_1$:

$
&z = sin(0) + sin(y) - sin(0+y) eq.triple 0 quad &(x,y) in l_1 \
&z = sin(x) + sin(2pi-x) - sin(2pi) eq.triple 0 quad &(x,y) in l_3 \
&z = sin 0 + sin y - sin(0+y) eq.triple 0 quad &(x,y) in l_1 \
&z = sin x + sin(2pi-x) - sin(2pi) eq.triple 0 quad &(x,y) in l_3 \
$

// TODO: 补充 z = sin(x) + sin(2pi-x) - sin(2pi) 的图像
// TODO: 补充 z = sin x + sin(2pi-x) - sin(2pi) 的图像


#pagebreak()
Expand Down Expand Up @@ -512,7 +512,7 @@ $

此时 $V = 8x y z = 8/9 sqrt(3)$, 为最大值.

// #pagebreak()
#pagebreak()
=== 20
$
f(x,y,z,mu)=(x+y+2z-9)/(sqrt(1^2+1^2+2^2)) - mu(x^2/4+y^2+z^2-1)\
Expand All @@ -526,7 +526,7 @@ dcases(
P_1(4/3,1/3,2/3) quad P_2(-4/3,-1/3,-2/3)
$

// #pagebreak()
#pagebreak()
=== 21
$
F(x,y,z)=sqrt(x)-sqrt(y)-sqrt(z)-sqrt(a) eq.triple 0\
Expand Down Expand Up @@ -581,10 +581,158 @@ $
integral_0^1dif y integral_(1/2)^1f(x,y)dif x+integral_1^2dif y integral_(1/2)^(1/y)f(x,y)dif x = integral_(1/2)^1dif x integral_(0)^(1/x)f(x,y)dif y\
$

#pagebreak()
=== 2

- (1)
$
&integral.double_D y/(1+x^2+y^2)^(3/2) dif x dif y quad D=[0,1]times[0,1]\
&quad integral.double_D y/(1+x^2+y^2)^(3/2) dif x dif y quad D=[0,1]times[0,1]\
&=integral_0^1 dif x integral_0^1 y/(1+x^2+y^2)^(3/2) dif y\
&=integral_0^1 dif x integral_0^1 (1/2 dif y^2)/(1+x^2+y^2)^(3/2)\
&=integral_0^1 -(1+x^2+y^2)^(-1/2)|_0^1 dif x\
&=integral_0^1 -1/sqrt(2+x^2) + 1/sqrt(1+x^2) dif x\
&=-ln(x+sqrt(2+x^2)) + ln(x+sqrt(1+x^2))|_0^1\
&=-ln(1+sqrt(3)) + ln(1+sqrt(2)) + 1/2ln 2\
&=quad ln(-1+sqrt(3))+ln(1+sqrt(2))-1/2ln 2
$


- (2)
$
&quad integral.double_D sin(x+y) dif x dif y quad D=[0,1]times[0,1]\
&=integral_0^1 dif x integral_0^1 sin(x+y) dif y\
&=integral_0^1 (-cos(1+x)+cos x) dif x\
&=-sin 2 + sin 1 + sin 1 - sin 0\
&=2sin 1 - sin 2
$

- (3)
$
&quad integral.double_D cos(x+y) dif x dif y\
&=integral_0^pi dif x integral_x^pi cos(x+y) dif y\
&=-integral_0^pi sin(2x)+sin x dif x\
&=-2
$

#align(center)[
#rect[
$
integral_0^pi sin(2x) dif x = 1/2 integral_0^(2pi) sin x dif x = 0
$
]
]

#pagebreak()
- (6)
$
&quad integral.double_D (sin y)/y dif x dif y\
&= integral_0^1 dif y integral_(y^2)^y (sin y)/y dif x\
&= integral_0^1 (1-y)sin y dif y\
&= 1-sin 1
$

- (7)
$
&quad integral.double_D x^2/y^2 dif x dif y\
&= integral_1^2dif x integral_(1/x)^x x^2/y^2 dif y\
&= integral_1^2 (-x^2/y)|_(y=1/x)^(y=x) dif x\
&= integral_1^2 (-x+x^3) dif x\
&= -2^2/2 + 2^4/4 + 1/2 - 1/4\
&= 9/4
$

- (8)
$
&quad integral.double_D abs(cos(x+y)) dif x dif y\
&= integral_0^(pi/4) dif x integral_0^x dif y + integral_(pi/4)^(pi/2) dif x integral_0^(pi/2-x) dif y - integral_(pi/4)^(pi/2) dif x integral_(pi/2 - x)^(x) dif y \
&= pi/2 - 1
$

#pagebreak()
=== 3

- (1)
$
&quad integral.double_D (x^2+y^2) dif x dif y quad D = [-1,1]times [-1,1]\
&= 4 integral.double_(D^') (x^2+y^2) dif x dif y quad D^' = [0,1]times [0,1]\
&= 8 integral.double_(D^') x^2 dif x dif y\
&= 8 integral_0^1 x^2 dif x\
&= 8/3
$

- (2)

#image("imgs/8.png", width: 50%)

$
integral.double_D sin x sin y dif x dif y = 0
$

#pagebreak()
=== 5

$
integral_0^a dif x integral_0^x f(x)f(y) dif y &= integral_0^a dif y integral_0^x f(y)f(x) dif x \
=> integral_0^a dif x integral_0^x f(x)f(y) dif y &= 1/2 integral.double_D f(x)f(y) dif x dif y quad &D = [0,a]times[0,a]\
&= 1/2 (integral_0^a f(x) dif x)^2 quad qed \
integral_0^a dif x integral_0^x f(y) dif y &= integral_0^a dif y integral_y^a f(y) dif x\
&=integral_0^a (a-y) f(y) dif y quad qed
$

// #pagebreak()
=== 6
$
integral.double_D (diff^2 f)/(diff x diff y) dif x dif y & = integral_a^b dif x integral_c^d (diff^2 f)/(diff x diff y) dif y\
&= integral_a^b ((diff f)/(diff x)(x,d) - (diff f)/(diff x)(x,c)) dif x\
&= f(b,d) - f(a,d) - f(b,c) + f(a,c) quad qed
$

// #pagebreak()
=== 7
$
1/(2pi r_0) integral.double_(r<r_0) f(r,theta) r dif r dif theta = 1/(2pi r_0) integral_0^(2pi) dif theta integral_0^r_0 f(r,theta) r dif r\
\
forall epsilon>0, exists r_0 = r_0(theta) quad s.t. quad r<r_0 => |f(r,theta)-f(0,0)|<epsilon\
\
=> 1/(2pi r_0) integral_0^(2pi) dif theta integral_0^r_0 f(r,theta) r dif r < 1/(2pi r_0) integral_0^(2pi) dif theta integral_0^r_0 (f(0, 0) + epsilon) r dif r = f(0,0) + epsilon\
=> 1/(2pi r_0) integral_0^(2pi) dif theta integral_0^r_0 f(r,theta) r dif r > 1/(2pi r_0) integral_0^(2pi) dif theta integral_0^r_0 (f(0, 0) - epsilon) r dif r = f(0,0) - epsilon\
\
\
=> (1/(2pi r_0) integral.double_(r<r_0) f(r,theta) r dif r dif theta - f(0,0)) < epsilon quad forall epsilon, exists r, forall r_0<r quad qed
$

#pagebreak()
=== P166 1

- (1)
$
&quad integral_0^R dif x integral_0^(sqrt(R^2-x^2)) ln(1+x^2+y^2) dif y\
&= integral_0^(2pi) dif theta integral_0^R ln(1+r^2) r dif r\
&= 2pi integral_0^R ln(1+r^2) r dif r\
&= pi integral_0^R^2 ln(1+t) dif t\
&= pi[(t+1)ln(1+t)-t]_0^R^2\
&= pi[(R^2+1)ln(1+R^2)-R^2]
$

- (4)
$
&quad integral_0^(1/(sqrt(2))) dif x integral_x^(sqrt(1-x^2)) x y(x+y) dif y \
&=integral_(pi/4)^(pi/2) dif theta integral_0^1 r cos theta dot r sin theta dot (r cos theta + r sin theta) r dif r\
&=1/5 integral_(pi/4)^(pi/2) (cos^2 theta sin theta + cos theta sin^2 theta) dif theta\
&=1/15
$

- (5)

$
&quad integral_0^(R/(sqrt(1+R^2))) dif x integral_0^(R x)(1+(y^2)/(x^2)) dif y + integral_(R/sqrt(1+R^2))^(R) dif x integral_0^(sqrt(R^2-x^2))(1+(y^2)/(x^2)) dif y\
&=integral_0^(arctan R) dif theta integral_0^R (r^2)/(r^2 cos^2 theta) r dif r\
&=integral_0^(arctan R) dif theta integral_0^R sec^2 theta dot r dif r\
// &=integral_0^(arctan R) dif theta sec^2 theta r^2/2 |_0^R\
&=R^2/2 integral_0^(arctan R) sec^2 theta dif theta\
&=R^2/2 tan theta |_0^(arctan R)\
// &=1/2 R^2 tan(arctan R)\
&=1/2 R^3
$

0 comments on commit 4be7f60

Please sign in to comment.