Skip to content

Commit

Permalink
2024_SP_TA: add
Browse files Browse the repository at this point in the history
  • Loading branch information
tiankaima committed Apr 17, 2024
1 parent 4690069 commit 112aa63
Showing 1 changed file with 224 additions and 1 deletion.
225 changes: 224 additions & 1 deletion 2bc0c8-2024_spring_TA/main.typ
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,6 @@

#let dcases(..args) = {
math.cases(
gap: 0.6em,
math.display(..args),
)
}
Expand Down Expand Up @@ -365,3 +364,227 @@ P_1(0,2) quad P_2(0,-2) quad P_3(2,0) quad P_4(-2,0)
$

容易得到 $z_min = -4, z_max = 4$

#pagebreak()
=== 11(3)

$
&z=sin(x)+sin(y)-sin(x+y) quad D={(x,y)mid("|")x>=0,y>=0,x+y<=2pi} \
$

区域内的情况:

$
&dcases(
(diff z)/(diff x) &= cos(x)-cos(x+y) = 0 \
(diff z)/(diff y) &= cos(y)-cos(x+y) = 0 \
) \
&P_1(0,0) quad P_2(2pi,0) quad P_3(0,2pi) quad P_4(pi/3, pi/3)
$

$ => z_min = 0, z_max=sqrt(3)/2 quad forall x in D^o $

边界上的情况,我们分成三段:

$
&l_1: {0}times[0,2pi] \
&l_2: [0,2pi]times{0} \
&l_3: {(x,y)mid("|")x+y=2pi,x>=0,y>=0} \
$

其中 $l_1, l_2$ 是对称的,我们只考虑 $l_1$:

$
&z = sin(0) + sin(y) - sin(0+y) eq.triple 0 quad &(x,y) in l_1 \
&z = sin(x) + sin(2pi-x) - sin(2pi) eq.triple 0 quad &(x,y) in l_3 \
$

// TODO: 补充 z = sin(x) + sin(2pi-x) - sin(2pi) 的图像


#pagebreak()
=== 13
$
dcases(
z=x^2+2y^2\
z=6-2x^2-y^2\
) quad => quad x^2 + y^2 = 2
$

问题转为考虑 $z=x^2+2y^2$$x^2+y^2=2$ 上的最值问题, 应用拉格朗日乘子法:

$
L(x,y, mu) = x^2+2y^2 + mu(x^2+y^2-2) \
dcases(
(diff L)/(diff x) = 2x(1+mu) = 0 \
(diff L)/(diff y) = 4y(1+mu) = 0 \
x^2+y^2 = 2 \
)\
P_1(0,sqrt(2)) quad P_2(0,-sqrt(2)) quad P_3(sqrt(2),0) quad P_4(-sqrt(2),0)
$

因此 $z_min = 2, z_max = 4$

//TODO: 补图

#pagebreak()
=== 14

$
f(x,y)=3x^2y-x^4-2y^2\
dcases(
(diff f)/(diff x)|_((0,0)) = 6x y-4x^3 = 0 \
(diff f)/(diff y)|_((0,0)) = 3x^2-4y = 0 \
(diff^2 f)/(diff x^2)|_((0,0)) = 6y-12x^2 = 0 \
(diff^2 f)/(diff y^2)|_((0,0)) = -4 \
(diff^2 f)/(diff x diff y)|_((0,0)) = 6x = 0 \
)\
$

$Delta = A C-B^2=0$ 欠定, 我们继续往下算:

$
dcases(
(diff^3 f)/(diff x^3)|_((0,0)) = -24x = 0 \
(diff^3 f)/(diff x^2 diff y)|_((0,0)) = 6 \
(diff^3 f)/(diff x diff y^2)|_((0,0)) = 0 \
(diff^3 f)/(diff y^3)|_((0,0)) = 0 = 0 \
)
$

因此 $f(x,y)$的三阶 Taylor 展开为:

$
f(x,y) = -4y^2+18x^2y + o(rho^3)
$

显然 $f(0,0)=0$ 不是极值点.

我们考虑任意过 $(0,0)$ 的直线 $y=k x$, 有:
$
f(x) = 3k x^3 - x^4 - 2k^2 x^2\
dcases(
(dif f)/(dif x)|_((0,0)) = 9k x^2 - 4x^3 - 4k^2 x = 0\
(dif^2 f)/(dif x^2)|_((0,0)) = 18k x - 12x^2 - 4k^2 = - 4k^2<0\
)
$
因此在每条过原点的直线上 $(0,0)$ 都是极大值点.

#pagebreak()
=== 18

$
f(x,y) = (x - x_1)^2 + (y - y_1)^2 + dots.c + (x - x_n)^2 + (y - y_n)^2\
dcases(
(diff f)/(diff x) = 2(x - x_1) + dots.c + 2(x - x_n) = 0\
(diff f)/(diff y) = 2(y - y_1) + dots.c + 2(y - y_n) = 0\
(diff^2 f)/(diff x^2) = 2n\
(diff^2 f)/(diff y^2) = 2n\
(diff^2 f)/(diff x diff y) = 0\
)\
$

因此解出
$
=> x = (x_1 + dots.c + x_n) / n quad y = (y_1 + dots.c + y_n) / n\
$

$
Delta = A C - B^2 = 2n^2 - 0 = 2n^2 > 0 quad A = 2n > 0
$
因此是极小值点.


#pagebreak()
=== 19

$
f(x,y, mu) = x y z - mu(x^2/a^2 + y^2/b^2 + z^2/c^2 - 1)\
dcases(
(diff f)/(diff x) = y z - 2 mu x / a^2 = 0\
(diff f)/(diff y) = x z - 2 mu y / b^2 = 0\
(diff f)/(diff z) = x y - 2 mu z / c^2 = 0\
x^2/a^2 + y^2/b^2 + z^2/c^2 = 1\
)\
(x,y,z) = cal(k) (a,b,c) quad=>quad cal(k)=sqrt(3)/3
$

此时 $V = 8x y z = 8/9 sqrt(3)$, 为最大值.

// #pagebreak()
=== 20
$
f(x,y,z,mu)=(x+y+2z-9)/(sqrt(1^2+1^2+2^2)) - mu(x^2/4+y^2+z^2-1)\
dcases(
(diff f)/(diff x) = 1/(sqrt(6)) - mu x / 2 = 0\
(diff f)/(diff y) = 1/(sqrt(6)) - 2mu y = 0\
(diff f)/(diff z) = 2/(sqrt(6)) - 2mu z = 0\
x^2/4 + y^2 + z^2 = 1\
)\
P_1(4/3,1/3,2/3) quad P_2(-4/3,-1/3,-2/3)
$

// #pagebreak()
=== 21
$
F(x,y,z)=sqrt(x)-sqrt(y)-sqrt(z)-sqrt(a) eq.triple 0\
dif F = 1/(2sqrt(x))dif x - 1/(2sqrt(y))dif y - 1/(2sqrt(z))dif z = 0\
1/(2sqrt(x_0))(x-x_0) - 1/(2sqrt(y_0))(y-y_0) - 1/(2sqrt(z_0))(z-z_0) = 0\
x/(2sqrt(x_0)) - y/(2 sqrt(y_0)) - z/(2 sqrt(z_0)) = sqrt(x_0)/2 - sqrt(y_0)/2 - sqrt(z_0)/2\
$

所有截距之和:

$
l_1+l_2+l_3=(sqrt(x_0)-sqrt(y_0)-sqrt(z_0))^2 = a
$

四面体体积:

$
1/6 l_1 dot l_2 dot l_3 = 1/6 sqrt(a) dot sqrt(x_0) dot sqrt(y_0) dot sqrt(z_0)
$

$
f(x_0, y_0, z_0, mu) = sqrt(a) dot sqrt(x_0) dot sqrt(y_0) dot sqrt(z_0) - mu(sqrt(x_0) - sqrt(y_0) - sqrt(z_0) - sqrt(a)) \
f(l,m,n,mu) = l m n - mu(l - m - n - a)\
dcases(
(diff f)/(diff l) = m n - mu = 0\
(diff f)/(diff m) = l n - mu = 0\
(diff f)/(diff n) = l m - mu = 0\
l m n = a\
)\
=> quad l = m = n = sqrt(a)
$

所以最大四面体面积为 $a^2/6$, 截面: $x-y-z+a=0$

#pagebreak()
=== P156 1

- (2)
$
integral_0^2 dif x integral_(2x)^(6-x)f(x,y)dif y = integral_0^4 dif y integral_0^(y/2) f(x,y)dif x + integral_4^6 dif y integral_0^(6-y) f(x,y)dif x\
$
- (3)
$
integral_0^a dif y integral_(a-sqrt(a^2-y^2))^(a+sqrt(a^2-y^2))f(x,y)dif x = integral_0^(2a) dif x integral_(0)^(sqrt(a^2-(x-a)^2))f(x,y)dif y\
$
- (5)
$
integral_0^1 dif x integral_0^x f(x,y) dif y+integral_1^2 dif x+integral_0^(2-x) f(x,y) dif y = integral_0^2 dif y integral_0^(2-y) f(x,y) dif x\
$
- (6)
$
integral_0^1dif y integral_(1/2)^1f(x,y)dif x+integral_1^2dif y integral_(1/2)^(1/y)f(x,y)dif x = integral_(1/2)^1dif x integral_(0)^(1/x)f(x,y)dif y\
$

=== 2

- (1)
$
&integral.double_D y/(1+x^2+y^2)^(3/2) dif x dif y quad D=[0,1]times[0,1]\
&=integral_0^1 dif x integral_0^1 y/(1+x^2+y^2)^(3/2) dif y\
$

0 comments on commit 112aa63

Please sign in to comment.