Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Create codegen_preprocessor #2219

Merged
merged 1 commit into from
Sep 14, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions codegen/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,7 @@ py_binary(
deps = [
":graph",
":inference_generator",
"//codegen/preprocessor:preprocessor_schema_py",
"//tensorflow/lite/tools:flatbuffer_utils",
"@absl_py//absl:app",
"@absl_py//absl/flags",
Expand Down
26 changes: 25 additions & 1 deletion codegen/code_generator.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,18 +22,27 @@

from tflite_micro.codegen import inference_generator
from tflite_micro.codegen import graph
from tflite_micro.codegen.preprocessor import preprocessor_schema_py_generated as preprocessor_fb
from tflite_micro.tensorflow.lite.tools import flatbuffer_utils

# Usage information:
# Default:
# `bazel run codegen:code_generator -- --model=</path/to/my_model.tflite>`
# `bazel run codegen:code_generator -- \
# --model=</path/to/my_model.tflite> \
# --preprocessed_data=</path/to/preprocesser_output>`
# Output will be located at: /path/to/my_model.h|cc

_MODEL_PATH = flags.DEFINE_string(name="model",
default=None,
help="Path to the TFLite model file.",
required=True)

_PREPROCESSED_DATA_PATH = flags.DEFINE_string(
name="preprocessed_data",
default=None,
help="Path to output of codegen_preprocessor.",
required=True)

_OUTPUT_DIR = flags.DEFINE_string(
name="output_dir",
default=None,
Expand All @@ -48,12 +57,27 @@
required=False)


def _read_preprocessed_data(
preprocessed_data_file: str) -> preprocessor_fb.DataT:
with open(preprocessed_data_file, 'rb') as file:
data_byte_array = bytearray(file.read())
return preprocessor_fb.DataT.InitFromObj(
preprocessor_fb.Data.GetRootAs(data_byte_array, 0))


def main(argv: Sequence[str]) -> None:
output_dir = _OUTPUT_DIR.value or os.path.dirname(_MODEL_PATH.value)
output_name = _OUTPUT_NAME.value or os.path.splitext(
os.path.basename(_MODEL_PATH.value))[0]

model = flatbuffer_utils.read_model(_MODEL_PATH.value)
preprocessed_data = _read_preprocessed_data(_PREPROCESSED_DATA_PATH.value)

print("Generating inference code for model:\n"
" model: {}\n"
" preprocessed_model: {}\n".format(
_MODEL_PATH.value,
preprocessed_data.inputModelPath.decode('utf-8')))

inference_generator.generate(output_dir, output_name,
graph.OpCodeTable([model]), graph.Graph(model))
Expand Down
37 changes: 35 additions & 2 deletions codegen/examples/hello_world/README.md
Original file line number Diff line number Diff line change
@@ -1,18 +1,51 @@
# Codegen Hello World Example

This is a code-generated example of the hello world model.
This is a code-generated example of the hello world model. The process is
currently somewhat involved:

## Build the preprocessor for your target

This creates a target-specific preprocessor binary capable of performing the
init and prepare stages of the Interpreter and serializing the output. This
binary can be re-used for multiple models.

### x86
```
make -f tensorflow/lite/micro/tools/make/Makefile codegen_preprocessor
```

## Run the preprocessor

The preprocessor will take the provided model, create a TFLM Interpreter, and
allocate tensors. It will then capture and serialize the resulting data
structures needed for inference. For embedded targets, this should be run under
simulation.

### x86
```
./gen/linux_x86_64_default/bin/codegen_preprocessor \
$(pwd)/tensorflow/lite/micro/examples/hello_world/models/hello_world_int8.tflite \
$(pwd)/gen/linux_86_64_default/genfiles/hello_world_int8.ppd
```

## Generate the inference code

To generate the inference code at `codegen/example/hello_world_model.h/.cc`:

### x86
```
bazel run codegen:code_generator -- \
--model $(pwd)/tensorflow/lite/micro/examples/hello_world/models/hello_world_int8.tflite \
--preprocessed_data $(pwd)/gen/linux_86_64_default/genfiles/hello_world_int8.ppd \
--output_dir $(pwd)/codegen/examples/hello_world \
--output_name hello_world_model
```

To compile the generated source, you can use the Makefile:
## Compile the generated inference code

To compile the generated source, you can use the Makefile:

### x86
```
make -f tensorflow/lite/micro/tools/make/Makefile codegen_hello_world
```
17 changes: 17 additions & 0 deletions codegen/preprocessor/Makefile.inc
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

CODEGEN_PREPROCESSOR_SRCS := \
$(TENSORFLOW_ROOT)codegen/preprocessor/main.cc
88 changes: 88 additions & 0 deletions codegen/preprocessor/main.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include <cstdlib>
#include <fstream>
#include <iostream>
#include <memory>

#include "codegen/preprocessor/preprocessor_schema_generated.h"
#include "flatbuffers/flatbuffers.h"
#include "tensorflow/lite/schema/schema_generated.h"

namespace {

std::unique_ptr<char[]> ReadModelFile(const char* model_file_name) {
std::ifstream model_file(model_file_name, std::ios::binary);
if (!model_file.is_open()) {
std::cerr << "codegen_preprocessor: could not open model file: "
<< model_file_name << std::endl;
return nullptr;
}

model_file.seekg(0, std::ios::end);
size_t num_bytes = model_file.tellg();
model_file.seekg(0, std::ios::beg);
std::unique_ptr<char[]> model_data(new char[num_bytes]);
model_file.read(model_data.get(), num_bytes);

return model_data;
}

int WriteOutputFile(const char* output_file_name,
flatbuffers::span<uint8_t> output) {
std::ofstream output_file(output_file_name, std::ios::trunc);
if (!output_file.is_open()) {
std::cerr << "codegen_preprocessor: could not open output file: "
<< output_file_name << std::endl;
return EXIT_FAILURE;
}

output_file.write(reinterpret_cast<char*>(output.data()), output.size());
return 0;
}

} // namespace

int main(int argc, char* argv[]) {
if (argc < 2) {
std::cerr << "codegen_preprocessor: invalid usage!" << std::endl;
std::cerr << "usage: codegen_preprocessor <tflite_model> <output_file>"
<< std::endl;
return EXIT_FAILURE;
}

const char* model_file_name = argv[1];
const char* output_file_name = argv[2];

const auto model_data = ReadModelFile(model_file_name);
if (!model_data) {
return EXIT_FAILURE;
}

// We have to create our own allocator, as the typical TFLM runtime disables
// its use (to avoid dynamic allocation).
flatbuffers::DefaultAllocator allocator;
flatbuffers::FlatBufferBuilder builder{2048, &allocator};
const auto input_model_path = builder.CreateString(model_file_name);

// Do the preprocess work.

tflm::codegen::preprocessor::DataBuilder data_builder(builder);
data_builder.add_input_model_path(input_model_path);
builder.Finish(data_builder.Finish());

return WriteOutputFile(output_file_name, builder.GetBufferSpan());
}
15 changes: 15 additions & 0 deletions tensorflow/lite/micro/tools/make/Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -294,6 +294,8 @@ MICRO_LITE_BENCHMARKS := $(wildcard $(TENSORFLOW_ROOT)tensorflow/lite/micro/tool
MICROLITE_BENCHMARK_SRCS := \
$(wildcard $(TENSORFLOW_ROOT)tensorflow/lite/micro/tools/benchmarking/*benchmark.cc)

MICRO_LITE_CODEGEN_PREPROCESSOR := $(TENSORFLOW_ROOT)codegen/preprocessor/Makefile.inc

MICRO_LITE_CODEGEN_EXAMPLES := $(shell find $(TENSORFLOW_ROOT)codegen/examples/ -name Makefile.inc)

MICROLITE_TEST_SRCS := \
Expand Down Expand Up @@ -704,6 +706,9 @@ include $(MICRO_LITE_BENCHMARKS)
# Load custom kernel tests.
include $(MAKEFILE_DIR)/additional_tests.inc

# Load codegen preprocessor rules
include $(MICRO_LITE_CODEGEN_PREPROCESSOR)

# Create rules for downloading third-party dependencies.
THIRD_PARTY_TARGETS :=
$(foreach DOWNLOAD,$(THIRD_PARTY_DOWNLOADS),$(eval $(call create_download_rule,$(DOWNLOAD))))
Expand Down Expand Up @@ -863,6 +868,16 @@ integration_tests: $(MICROLITE_INTEGRATION_TEST_TARGETS)
generated_micro_mutable_op_resolver: $(MICROLITE_GEN_OP_RESOLVER_TEST_TARGETS)
endif

CODEGEN_PREPROCESSOR_PATH := $(BINDIR)codegen_preprocessor

codegen_preprocessor: $(CODEGEN_PREPROCESSOR_PATH)

$(CODEGEN_PREPROCESSOR_PATH): $(CODEGEN_PREPROCESSOR_SRCS) $(MICROLITE_LIB_PATH)
@mkdir -p $(dir $@)
$(CXX) $(CXXFLAGS) $(INCLUDES) \
-o $@ $< \
$(MICROLITE_LIB_PATH) $(LDFLAGS) $(MICROLITE_LIBS)

# Just build the test targets
build: $(MICROLITE_BUILD_TARGETS)

Expand Down