BigQueryへのクエリロジックのテストができます
from bqqtest import QueryTest
from google.cloud import bigquery
# expected
expected_schema = [
{"name": "name", "type": "STRING", "mode": "NULLABLE"},
{"name": "value", "type": "INT64", "mode": "NULLABLE"},
]
expected_datum = [["abc", 100], ["bbb", 333]]
expected = {"schema": expected_schema, "datum": expected_datum}
# actual
target_schema = [
{"name": "name", "type": "STRING", "mode": "NULLABLE"},
{"name": "value", "type": "INT64", "mode": "NULLABLE"},
]
target_datum = [["abc", 100], ["bbb", 333]]
tables = {"test.target_table": {"schema": target_schema, "datum": target_datum}}
eval_query = {"query": "SELECT * FROM test.target_table", "params": []}
qt = QueryTest(bigquery.Client(), expected, tables, eval_query)
success, diff = qt.run()
success # True
from bqqtest import QueryTest
from google.cloud import bigquery
# expected
expected_schema = [
{"name": "item", "type": "STRING", "mode": "NULLABLE"},
{"name": "total", "type": "INT64", "mode": "NULLABLE"},
]
expected_datum = [["abc", 300], ["bbb", 333]]
expected = {"schema": expected_schema, "datum": expected_datum}
# actual
target_schema = [
{"name": "item", "type": "STRING", "mode": "NULLABLE"},
{"name": "value", "type": "INT64", "mode": "NULLABLE"},
]
target_datum = [["abc", 100], ["bbb", 333], ["abc", 200]]
tables = {"test.target_table": {"schema": target_schema, "datum": target_datum}}
eval_query = {
"query": "SELECT item, SUM(value) AS total FROM test.target_table GROUP BY item",
"params": [],
}
qt = QueryTest(bigquery.Client(), expected, tables, eval_query)
success, diff = qt.run()
success # True
from bqqtest import QueryTest
from google.cloud import bigquery
# expected
expected_schema = [
{"name": "item", "type": "STRING", "mode": "NULLABLE"},
{"name": "value", "type": "INT64", "mode": "NULLABLE"},
]
expected_datum = [["abc", 100], ["bbb", 333], ["xxxx", 888], ["zzzz", 999]]
expected = {"schema": expected_schema, "datum": expected_datum}
# actual
target_schema = [
{"name": "item", "type": "STRING", "mode": "NULLABLE"},
{"name": "value", "type": "INT64", "mode": "NULLABLE"},
]
target_datum1 = [["abc", 100], ["bbb", 333]]
target_datum2 = [["xxxx", 888], ["zzzz", 999]]
tables = {
"test.table1": {"schema": target_schema, "datum": target_datum1},
"test.table2": {"schema": target_schema, "datum": target_datum2},
}
eval_query = {
"query": "SELECT * FROM `test.table1` UNION ALL SELECT * FROM `test.table2`",
"params": [],
}
qt = QueryTest(bigquery.Client(), expected, tables, eval_query)
success, diff = qt.run()
success # True
see also https://qiita.com/tamanobi/items/9434ca0dbd5f0d3018d9
- WITH を利用して、 BigQuery に保存されないテストデータを一時的に生成します。
- BigQuery は保存されているデータ走査した量とAPIリクエスト数で課金されるため、費用抑えてユニットテストができます。
- 料金の詳細は、 BigQuery の公式ドキュメントを参照してください
- テストをするために、クエリを書き直す必要はありません
- ライブラリ内部では、対象テーブルの Identifier を書き換えてテーブルを差し替えます
BigQuery へ直接クエリを発行します。