Utilising NEAR as storage data availability with a focus on lowering rollup DA fees.
Herein outlines the components of the project and their purposes.
This contract provides the store for arbitrary DA blobs. In practice, these "blobs" are sequencing data from rollups, but they can be any data.
NEAR blockchain state storage is pretty cheap. At the time of writing, 100KiB is a flat fee of 1NEAR. To limit the costs of NEAR storage even more, we don't store the blob data in the blockchain state.
It works by taking advantage of NEAR consensus around receipts. When a chunk producer processes a receipt, there is consensus around the receipt. However, once the chunk has been processed and included in the block, the receipt is no longer required for consensus and can be pruned. The pruning time is at least 3 NEAR epochs, where each epoch is 12 Hours; in practice, this is around five epochs. Once the receipt has been pruned, it is the responsibility of archival nodes to retain the transaction data, and we can even get the data from indexers.
We can validate that the blob was retrieved from ecosystem actors in the format submitted by checking the blob commitment.
The blob commitment currently needs to be more efficient and will be improved, but it benefits us because anybody can build this with limited expertise and tooling.
It is created by taking a blob, chunking it into 256-byte pieces, and creating a Merkle tree, where each leaf is a Sha-256 hash of the shard.
The root of the Merkle tree is the blob commitment, which is provided as [transaction_id ++ commitment]
to the L1 contract, which is 64 bytes.
What this means:
- consensus is provided around the submission of a blob by NEAR validators
- the function input data is stored by full nodes for at least three days
- archival nodes can store the data for longer
- we don't occupy consensus with more data than needs to be
- indexers can also be used, and this Data is currently indexed by all significant explorers in NEAR
- the commitment is available for a long time, and the commitment is straightforward to create
A trustless off-chain light client for NEAR with DA-enabled features, Such as KZG commitments, Reed-Solomon erasure coding & storage connectors.
The light client provides easy access to transaction and receipt inclusion proofs within a block or chunk. This is useful for checking any dubious blobs which may not have been submitted or validating that a blob has been submitted to NEAR.
A blob submission can be verified by:
- taking the NEAR transaction ID from Ethereum for the blob commitment.
- Ask the light client for an inclusion proof for the transaction ID or the receipt ID if you're feeling specific; this will give you a Merkle inclusion proof for the transaction/receipt.
- once you have the inclusion proof, you can ask the light client to verify the proof for you, or advanced users can manually verify it themselves.
- armed with this knowledge, rollup providers can have advanced integration with light clients and build proving systems around it.
In the future, we will provide extensions to light clients such that non-interactive proofs can be supplied for blob commitments and other data availability features.
It's also possible that the light client may be on-chain for the header syncing and inclusion proof verification, but this is a low priority right now.
TODO: write and draw up extensions to the light client and draw an architecture diagram
This client is the defacto client for submitting blobs to NEAR.
These crates allow a client to interact with the blob store.
It can be treated as a "black box", where blobs go in, and [transaction_id ++ commitment]
emerges.
The da-rpc
crate is the rust client, which anyone can use if they prefer rust in their application.
The responsibility of this client is to provide a simple interface for interacting with NEAR DA.
The da-rpc-sys
crate is the FFI client binding for use by non-rust applications. This calls through to da-rpc
to interact with the blob store, with some additional black box functionality for dealing with pointers wrangling and such.
The da-rpc-go
crate is the go client bindings for use by non-rust applications, and this calls through to da-rpc-sys
, which provides another application-level layer for easy interaction with the bindings.
We have some proof of concept works for integrating with other rollups. We are working to prove the system's capabilities and provide a reference implementation for others to follow. They are being actively developed, so they are in a state of flux.
We know that each rollup has different features and capabilities, even if they are built on the same SDK. The reference implementations are not necessarily "production grade", they serve as inspiration to help integrators make use of NEAR DA in their system. Our ultimate goal is to make NEAR DA as pluggable as any other tool you might use. This means our heavy focus is on proving, submission and making storage as fair as possible.
Architecture Diagrams can be viewed at this directory
https://github.com/near/optimism
We have integrated with the Optimism OP stack. Utilising the Batcher
for submissions to NEAR and the proposer
for submitting NEAR commitment data to Ethereum.
https://github.com/firatNEAR/cdk-validium-node/tree/near
We have integrated with the Polygon CDK stack. Utilising the Sequence Sender for submissions to NEAR.
We have integrated a small plugin into the DAC daserver
. This is much like our http sidecar and provides a very modular integration into NEAR DA whilst supporting arbitrum
DACs. In the future, this will likely be the easiest way to support NEAR DA as it acts as an independent sidecar which can be scaled as needed. This also means that the DAC
can opt-in and out of NEAR DA, lowering their infrastructure burden. With this approach, the DAC committee members just need to have a "dumb" signing service, with the store backed
by NEAR.
The aim of NEAR DA is to be as modular as possible.
If implementing your own rollup, it should be fairly straightforward, assuming you can utilise da-rpc
or da-rpc-go
(with some complexity here).
All the implementations so far have been different, but the general rules have been:
- find where the sequencer normally posts batch data, for optimism it was the
batcher
, for CDK it's theSequence Sender
and plug the client in. - find where the sequencer needs commitments posted, for optimism it was the
proposer
, and CDK thesynchronizer
. Hook the blob reads from the commitment there.
The complexity arises, depending on how pluggable the commitment data is in the contracts. If you can simply add a field, great! But these waters are unchartered mostly.
If your rollup does anything additional, feel free to hack, and we can try reach the goal of NEAR DA being as modular as possible.
Makefiles are floating around, but here's a rundown of how to start with NEAR DA.
Prerequisites
Rust, go, cmake & friends should be installed. Please look at flake.nix#nativeBuildInputs
for a list of required installation items.
If you use Nix, you're in luck! Just do direnv allow
, and you're good to go.
Ensure you have setup near-cli
.
For the Makefiles to work correctly, you need to have the near-cli-rs
version of NEAR-CLI.
Make sure you setup some keys for your contract, the documentation above should help.
You can write these down, or query these from ~/.near-credentials/**
later.
If you didn't clone with submodules, sync them:
make submodules
Note, there are some semantic differences between near-cli-rs
and near-cli-js
. Notably, the keys generated with near-cli-js
used to have and account_id
key in the json object. But this is omitted in near-cli-rs
becuse it's already in the filename, but some applications require this object. So you may need to add it back in.
If you're using your own contract, you have to build the contract yourself. And make sure you set the keys.
To build the contract:
make build-contracts
The contract will now be in ./target/wasm32-unknown-unknown/release/near_da_blob_store.wasm
.
Now to deploy, once you've decided where you want to deploy to, and have permissions to deploy it.
Set $NEAR_CONTRACT
to the address you want to deploy to, and sign with.
For advanced users, take a look at the command and adjust as fit.
Next up:
make deploy-contracts
Don't forget to update your .env
file for DA_KEY
, DA_CONTRACT
and DA_ACCOUNT
for use later.
First clone the repository
Configure ./ops-bedrock/.env.example
.
This just needs copying the without .example
suffix, adding the keys, contract address and signer from your NEAR wallet, and should work out of the box for you.
To standardize the builds for da-rpc-sys and genesis, you can use a docker image.
da-rpc-sys-unix
This will copy the contents of da-rpc-sys-docker
generated libraries to the gopkg/da-rpc
folder.
op-devnet-genesis-docker
This will create a docker image to generate the genesis files
op-devnet-genesis
This will generate the genesis files in a docker container and push the files in .devnet
folder.
make op-devnet-up
This should build the docker images and deploy a local devnet for you
Once up, observe the logs
make op-devnet-da-logs
You should see got data from NEAR
and submitting to NEAR
Of course, to stop
make op-devnet-down
If you just wanna get up and running and have already built the docker images using something like make bedrock images
, there is a docker-compose-testnet.yml
in ops-bedrock
you can play with.
First clone the repository
Now we have to pull the docker image containing the contracts.
make cdk-images
why is this different to op-stack?
When building the contracts in cdk-validium-contracts
, it does a little bit more than build contracts.
It creates a local eth devnet, deploys the various components (CDKValidiumDeployer & friends).
Then it generates genesis and posts it to L1 at some arbitrary block.
The block number that the L2 genesis gets posted to is non-deterministic.
This block is then fed into the genesis
config in cdk-validium-node/tests
.
Because of this reason, we want an out of the box deployment, so using a pre-built docker image for this is incredibly convenient.
It's fairly reasonable that, when scanning for the original genesis, we can just query a bunch of blocks between 0..N for the genesis data. However, this feature doesn't exist yet.
Once the image is downloaded, or advanced users built the image and modified the genesis config for tests, we need to configure an env file again.
The envfile example is at ./cdk-stack/cdk-validium-node/.env.example
, and should be updated with the respective variables as above.
Now we can just do:
cdk-devnet-up
This wil spawn the devnet and an explorer for each network at localhost:4000
(L1) and localhost:4001`(L2).
Run a transaction, and check out your contract on NEAR, verify the commitment with the last 64 bytes of the transaction made to L1.
You'll get some logs that look like:
time="2023-10-03T15:16:21Z" level=info msg="Submitting to NEARmaybeFrameData{0x7ff5b804adf0 64}candidate0xfF00000000000000000000000000000000000000namespace{0 99999}txLen1118"
2023-10-03T15:16:21.583Z WARN sequencesender/sequencesender.go:129 to 0x0DCd1Bf9A1b36cE34237eEaFef220932846BCD82, data: 438a53990000000000000000000000000000000000000000000000000000000000000060000000000000000000000000f39fd6e51aad88f6f4ce6ab8827279cfffb922660000000000000000000000000000000000000000000000000000000000000180000000000000000000000000000000000000000000000000000000000000000233a121c7ad205b875b115c1af3bbbd8948e90afb83011435a7ae746212639654000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000651c2f3400000000000000000000000000000000000000000000000000000000000000005ee177aad2bb1f9862bf8585aafcc34ebe56de8997379cc7aa9dc8b9c68d7359000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000651c303600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000040b5614110c679e3d124ca2b7fca6acdd6eb539c1c02899df54667af1ffc7123247f5aa2475d57f8a5b2b3d3368ee8760cffeb72b11783779a86abb83ac09c8d59 {"pid": 7, "version": ""}
github.com/0xPolygon/cdk-validium-node/sequencesender.(*SequenceSender).tryToSendSequence
/src/sequencesender/sequencesender.go:129
github.com/0xPolygon/cdk-validium-node/sequencesender.(*SequenceSender).Start
/src/sequencesender/sequencesender.go:69
2023-10-03T15:16:21.584Z DEBUG etherman/etherman.go:1136 Estimating gas for tx. From: 0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266, To: 0x0DCd1Bf9A1b36cE34237eEaFef220932846BCD82, Value: <nil>, Data: 438a53990000000000000000000000000000000000000000000000000000000000000060000000000000000000000000f39fd6e51aad88f6f4ce6ab8827279cfffb922660000000000000000000000000000000000000000000000000000000000000180000000000000000000000000000000000000000000000000000000000000000233a121c7ad205b875b115c1af3bbbd8948e90afb83011435a7ae746212639654000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000651c2f3400000000000000000000000000000000000000000000000000000000000000005ee177aad2bb1f9862bf8585aafcc34ebe56de8997379cc7aa9dc8b9c68d7359000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000651c303600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000040b5614110c679e3d124ca2b7fca6acdd6eb539c1c02899df54667af1ffc7123247f5aa2475d57f8a5b2b3d3368ee8760cffeb72b11783779a86abb83ac09c8d59 {"pid": 7, "version": ""}
2023-10-03T15:16:21.586Z DEBUG ethtxmanager/ethtxmanager.go:89 Applying gasOffset: 80000. Final Gas: 246755, Owner: sequencer {"pid": 7, "version": ""}
2023-10-03T15:16:21.587Z DEBUG etherman/etherman.go:1111 gasPrice chose: 8 {"pid": 7, "version": ""}
For this transaction, the blob commitment was 7f5aa2475d57f8a5b2b3d3368ee8760cffeb72b11783779a86abb83ac09c8d59
And if I check the CDKValidium contract 0x0dcd1bf9a1b36ce34237eeafef220932846bcd82
, the root was at the end of the calldata.
0x438a53990000000000000000000000000000000000000000000000000000000000000060000000000000000000000000f39fd6e51aad88f6f4ce6ab8827279cfffb922660000000000000000000000000000000000000000000000000000000000000180000000000000000000000000000000000000000000000000000000000000000233a121c7ad205b875b115c1af3bbbd8948e90afb83011435a7ae746212639654000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000651c2f3400000000000000000000000000000000000000000000000000000000000000005ee177aad2bb1f9862bf8585aafcc34ebe56de8997379cc7aa9dc8b9c68d7359000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000651c303600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000040b5614110c679e3d124ca2b7fca6acdd6eb539c1c02899df54667af1ffc7123247f5aa2475d57f8a5b2b3d3368ee8760cffeb72b11783779a86abb83ac09c8d59
Build daserver/datool:
make target/bin/daserver && make target/bin/datool
Deploy your DA contract as above
Update daserver config to introduce new configuration fields:
"near-aggregator": { "enable": true, "key": "ed25519:insert_here", "account": "helloworld.testnet", "contract": "your_deployed_da_contract.testnet", "storage": { "enable": true, "data-dir": "config/near-storage" } },
target/bin/datool client rpc store --url http://localhost:7876 --message "Hello world" --signing-key config/daserverkeys/ecdsa
Take the hash, check the output:
target/bin/datool client rest getbyhash --url http://localhost:7877 --data-hash 0xea7c19deb86746af7e65c131e5040dbd5dcce8ecb3ca326ca467752e72915185