Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

post_process uses full correlation, fix filter_atoms #284

Merged
merged 4 commits into from
Aug 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 7 additions & 7 deletions janus_core/helpers/post_process.py
Original file line number Diff line number Diff line change
Expand Up @@ -189,7 +189,7 @@ def compute_vaf(
use_velocities: bool = False,
fft: bool = False,
index: SliceLike = (0, None, 1),
filter_atoms: MaybeSequence[MaybeSequence[int]] = ((),),
filter_atoms: MaybeSequence[MaybeSequence[Optional[int]]] = ((None),),
) -> NDArray[float64]:
"""
Compute the velocity autocorrelation function (VAF) of `data`.
Expand All @@ -209,7 +209,7 @@ def compute_vaf(
index : SliceLike
Images to analyze as `start`, `stop`, `step`.
Default is all images.
filter_atoms : MaybeSequence[MaybeSequence[int]]
filter_atoms : MaybeSequence[MaybeSequence[Optional[int]]]
Compute the VAF averaged over subsets of the system.
Default is all atoms.

Expand Down Expand Up @@ -238,9 +238,7 @@ def compute_vaf(
data = data[slice(*index)]

if use_velocities:
momenta = np.asarray(
[datum.get_momenta() / datum.get_masses() for datum in data]
)
momenta = np.asarray([datum.get_velocities() for datum in data])
else:
momenta = np.asarray([datum.get_momenta() for datum in data])

Expand All @@ -249,7 +247,7 @@ def compute_vaf(

# If filter_atoms not specified use all atoms
filter_atoms = [
atom if atom and atom[0] else range(n_atoms) for atom in filter_atoms
atom if atom[0] is not None else range(n_atoms) for atom in filter_atoms
]

used_atoms = {atom for atoms in filter_atoms for atom in atoms}
Expand All @@ -259,7 +257,9 @@ def compute_vaf(
np.asarray(
[
[
np.correlate(momenta[:, j, i], momenta[:, j, i], "same")
np.correlate(momenta[:, j, i], momenta[:, j, i], "full")[
n_steps - 1 :
]
for i in range(3)
]
for j in used_atoms
Expand Down
11 changes: 11 additions & 0 deletions tests/data/vaf-lj-1-2-3.dat
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
1.0066870750448105
0.6418190953234829
0.3563911120413356
0.3051070730422549
0.23009251840934272
0.26906890724754023
0.24509942703971466
0.15062229045327677
-0.23061920240560663
-0.42160528271693426
-0.20524096931167723
11 changes: 11 additions & 0 deletions tests/data/vaf-lj-3-4.dat
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
1.1263716900873755
0.8820158202526532
0.784347065477728
0.6806780688236092
0.5265986467643831
0.5295303067488114
0.5150663396964206
0.5188617483216265
0.3239983242603667
0.19859295298597962
0.058499204536948346
11 changes: 11 additions & 0 deletions tests/data/vaf-lj.dat
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
0.940392953490707
0.581286162528787
0.3474623957116591
0.19574532179574347
0.08404080467605056
0.02723301143121412
0.03320823810966539
-0.0004815372548760061
-0.05545244283596119
-0.06580258912853633
-0.09743930723331182
19 changes: 17 additions & 2 deletions tests/test_post_process.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@

from ase.io import read
import numpy as np
from pytest import approx
from typer.testing import CliRunner

from janus_core.calculations.md import NVE
Expand Down Expand Up @@ -172,23 +173,37 @@ def test_rdf_by_elements():
assert (np.isclose(expected_peaks[element], rdf[0][peaks])).all()


def test_vaf():
def test_vaf(tmp_path):
"""Test vaf will run."""
vaf_names = ("vaf-lj-3-4.dat", "vaf-lj-1-2-3.dat")
vaf_filter = ((3, 4), (1, 2, 3))

data = read(DATA_PATH / "lj-traj.xyz", index=":")
vaf = post_process.compute_vaf(data)
expected = np.loadtxt(DATA_PATH / "vaf-lj.dat")

assert isinstance(vaf, list)
assert len(vaf) == 1
assert isinstance(vaf[0], np.ndarray)
assert vaf[0] == approx(expected, rel=1e-9)

vaf = post_process.compute_vaf(data, fft=True)

assert isinstance(vaf, list)
assert len(vaf) == 1
assert isinstance(vaf[0], np.ndarray)

vaf = post_process.compute_vaf(data, filter_atoms=((3, 4), (1, 2, 3)))
vaf = post_process.compute_vaf(
data, filter_atoms=vaf_filter, filenames=[tmp_path / name for name in vaf_names]
)

assert isinstance(vaf, list)
assert len(vaf) == 2
assert isinstance(vaf[0], np.ndarray)

for i, name in enumerate(vaf_names):
assert (tmp_path / name).exists()
expected = np.loadtxt(DATA_PATH / name)
written = np.loadtxt(tmp_path / name)
assert vaf[i] == approx(expected, rel=1e-9)
assert vaf[i] == approx(written, rel=1e-9)