Skip to content

A python/CUDA pkg which solves numerically the kuramoto model through the Heun's method

Notifications You must be signed in to change notification settings

stdogpkg/cukuramoto

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Install

pip install cukuramoto

Running

import igraph as ig
import numpy as np
from stdog.utils.misc import ig2sparse 

block_size=1024 # gpu parameter

num_couplings = 40
N = 10000

G = ig.Graph.Erdos_Renyi(N, 3/N)
adj = ig2sparse(G)
adj = adj.tocsr()
ptr, indices = adj.indptr, adj.indices


couplings = np.linspace(0, 4, num_couplings).astype("float32")
omegas = np.tan(( np.arange(1,N+1)*np.pi)/N - ((N+1.)*np.pi)/(2.0*N)  ).astype("float32")
phases = np.random.uniform(-np.pi, np.pi, int(num_couplings*N)).astype("float32")
import cukuramoto

dt = 0.1
num_temps = 100
simulation = cukuramoto.Heuns(
    N, block_size, omegas, phases, couplings, 
    indices, ptr)

simulation.heuns(num_temps, dt)
order_parameter_list = simulation.get_order_parameter(num_temps, dt)
order_parameter_list = order_parameter_list.reshape(num_couplings, num_temps)
    
r = np.mean(order_parameter_list, axis=1)
stdr = np.std(order_parameter_list, axis=1)
   
import matplotlib.pyplot as plt
plt.ion()
fig, ax1 = plt.subplots()
ax1.plot(couplings,r,'.-')
ax2 = ax1.twinx()
ax2.plot(couplings,stdr,'r.-')
plt.show()

About

A python/CUDA pkg which solves numerically the kuramoto model through the Heun's method

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published