Skip to content

Commit

Permalink
Add documentation. Fix bugs.
Browse files Browse the repository at this point in the history
  • Loading branch information
pllim committed May 5, 2020
1 parent 73493f0 commit 440823b
Show file tree
Hide file tree
Showing 3 changed files with 121 additions and 1 deletion.
1 change: 1 addition & 0 deletions docs/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -278,6 +278,7 @@ Using **synphot**
synphot/observation
synphot/formulae
synphot/units
synphot/filter_fft
synphot/tutorials

.. _synphot_history:
Expand Down
117 changes: 117 additions & 0 deletions docs/synphot/filter_par.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
.. _synphot_par_filters:

Parameterized Filters
=====================

.. note::

The algorithm for parameterized filters here was originally developed by
Brett Morris for the `tynt <https://github.com/bmorris3/tynt/>`_ package.

Some filters could be approximated using Fast Fourier Transform (FFT).
If a filter is approximated this way, one only needs to store its FFT
parameters instead of all the sampled data points. This would reduce the
storage size and increase performance, at the cost of reduced accuracy.
If you decide to use the parameterization functions provided here,
it is up to you to decide whether the results are good enough for your
use cases or not.

.. _filter_fft_generation:

Generating FFT
--------------

.. testsetup::

>>> import os
>>> from astropy.utils.data import get_pkg_data_filename
>>> filename = get_pkg_data_filename(
... os.path.join('data', 'hst_acs_hrc_f555w.fits'),
... package='synphot.tests')

You could parameterize a given filter using
:func:`~synphot.filter_parameterization.filter_fft.filter_to_fft` as follows.
By default, 10 FFT parameters are returned as complex numbers::

>>> from synphot import SpectralElement
>>> from synphot.filter_parameterization import filter_to_fft
>>> filename = 'hst_acs_hrc_f555w.fits' # doctest: +SKIP
>>> bp = SpectralElement.from_file(filename)
>>> n_lambda, lambda_0, delta_lambda, tr_max, fft_pars = filter_to_fft(bp)
>>> n_lambda # Number of elements in wavelengths
10000
>>> lambda_0 # Starting value of wavelengths # doctest: +FLOAT_CMP
<Quantity 3479.999 Angstrom>
>>> delta_lambda # Median wavelength separation # doctest: +FLOAT_CMP
<Quantity 0.66748047 Angstrom>
>>> tr_max # Peak value of throughput # doctest: +FLOAT_CMP
<Quantity 0.241445>
>>> fft_pars # FFT parameters # doctest: +FLOAT_CMP
[(407.5180314841658+7.494005416219807e-16j),
(-78.52240189503877-376.53990235136575j),
(-294.86589196496584+127.25464850352665j),
(130.20273803287864+190.84263652863257j),
(96.62299079012317-91.70087676328245j),
(-32.572468348727654-34.227696019221035j),
(-8.051741476066471-21.354793540998294j),
(-51.708676896903725+6.883836090870033j),
(13.08719675518801+54.48177212720124j),
(38.635087381362396-13.02803811279449j)]

It is up to you to decide how to store this data, though storing it in a
table format is recommended. In fact, if you have many filters to parameterize,
:func:`~synphot.filter_parameterization.filter_fft.filters_to_fft_table`
will store the results in a table for you::

>>> from synphot.filter_parameterization import filters_to_fft_table
>>> mapping = {'HST/ACS/HRC/F555W': (bp, None)}
>>> filter_pars_table = filters_to_fft_table(mapping)
>>> filter_pars_table # doctest: +FLOAT_CMP +ELLIPSIS
<Table length=1>
filter n_lambda ... fft_9
...
str17 int32 ... complex128
----------------- -------- ... ---------------------------------------
HST/ACS/HRC/F555W 10000 ... (38.635087381362396-13.02803811279449j)
>>> filter_pars_table.write('my_filter_pars.fits') # doctest: +SKIP

.. _filter_fft_construction:

Reconstructing Filter from FFT
------------------------------

Once you have a parameterized filter (see :ref:`filter_fft_generation`),
you can reconstruct it for use using
:func:`~synphot.filter_parameterization.filter_fft.filter_from_fft`.
Following from the example above::

>>> from synphot.filter_parameterization import filter_from_fft
>>> reconstructed_bp = filter_from_fft(
... n_lambda, lambda_0, delta_lambda, tr_max, fft_pars)

For this particular example using HST ACS/HRC F555W filter, perhaps 10
parameters are not quite sufficient. Therefore, caution needs to be exercised
if you opt to parameterize your filters using this method.

.. plot::
:include-source:

import os
import matplotlib.pyplot as plt
from astropy.utils.data import get_pkg_data_filename
from synphot import SpectralElement
from synphot.filter_parameterization import filter_to_fft, filter_from_fft
filename = get_pkg_data_filename(
os.path.join('data', 'hst_acs_hrc_f555w.fits'),
package='synphot.tests')
bp = SpectralElement.from_file(filename)
fit_result = filter_to_fft(bp)
reconstructed_bp = filter_from_fft(*fit_result)
w = bp.waveset
plt.plot(w, bp(w), 'b-', label='Original')
plt.plot(w, reconstructed_bp(w), 'r--', label='Reconstructed')
plt.xlim(3500, 8000)
plt.xlabel('Wavelength (Angstrom)')
plt.ylabel('Throughput')
plt.title('HST ACS/HRC F555W')
plt.legend(loc='upper right', numpoints=1)
4 changes: 3 additions & 1 deletion synphot/filter_parameterization/filter_fft.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@ def filter_to_fft(bp, wavelengths=None, n_terms=10):
# Take the DFT of the interpolated transmittance curve
fft = np.fft.fft(tr_interp)[:n_terms]

return n_lambda, lambda_0, delta_lambda, tr_max, fft.tolist()
return n_lambda, lambda_0, delta_lambda, tr_max, fft.value.tolist()


def filter_from_fft(n_lambda, lambda_0, delta_lambda, tr_max, fft_parameters):
Expand Down Expand Up @@ -187,6 +187,8 @@ def filters_to_fft_table(filters_mapping, n_terms=10):
filters_mapping : dict
Dictionary mapping human-readable filter name to its
`~synphot.spectrum.SpectralElement` and wavelengths, if applicable.
If the filter object has a valid ``waveset``, just provide `None`
for wavelengths; otherwise provide a Quantity array for sampling.
For example::
{'JOHNSON/V': (<SpectralElement ...>, None),
Expand Down

0 comments on commit 440823b

Please sign in to comment.