Skip to content

Scripts for training adversarially robust classification models

License

Notifications You must be signed in to change notification settings

sovrasov/lightweight-robust-models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Scripts for training adversarially robust classification models

This set of scripts allows train and evaluate robust to PGD attack classification models on ImageNet dataset. Implementations of models are taken from the pytorchcv library, which means robust weights can be substituted to existing scripts that rely on pytorchcv.

Trained models

All the models are trained on adversarial samples obtained after 3 iterations of PGD with step=2/3*eps.

Model Input Resolution Params(M) MACs(G) eps dist Top-1 accuracy Top-5 accuracy Top-1 adv accuracy Top-5 adv accuracy
MobilenetV2 1x 224x224 3.4 0.3 0.02 l2 72.16 90.62 71.72 90.40
MobilenetV2 1x 224x224 3.4 0.3 0.05 l2 72.12 90.34 71.11 89.84
MobilenetV2 1x 224x224 3.4 0.3 0.3 l2 71.38 89.8 68.79 88.50

An example of training command:

python train.py \
 -a mobilenetv2_w1 \
 -b 256 \
 -d $IMAGENET_FOLDER \
 --epochs 150 \
 --lr-decay cos \
 --lr 0.05 \
 --wd 4e-5 \
 -c ./snapshots \
 --input-size 224 \
 --adv-eps 0.3 \
 --euclidean \
 -j 40

An example of an evaluation command:

python3 train.py \
 -a mobilenetv2_w1 \
 -d $IMAGENET_FOLDER  \
 -b 128 \
 --weight ./snapshots/model_best.pth.tar \
 --evaluate \
 --input-size 224 \
 -j 8 \
 --adv-eps 0.3 \
 --euclidean

About

Scripts for training adversarially robust classification models

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages