Skip to content

songlab-cal/QRscore

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

QRscore

QRscore is an R package designed for analysis of differentially expressed genes (DEGs) and differentially dispersed genes (DDGs). The workflow is shown in the following figure.

Workflow

Installation

QRscore requires the following packages to run effectively:

if (!requireNamespace("BiocManager", quietly = TRUE)) {
  install.packages("BiocManager")
}
if (!requireNamespace("DESeq2", quietly = TRUE)) {
  BiocManager::install("DESeq2")
}
if (!requireNamespace("BiocParallel", quietly = TRUE)) {
  BiocManager::install("BiocParallel")
}
if (!requireNamespace("devtools", quietly = TRUE)) {
  install.packages("devtools")
}
devtools::install_github("Fanding-Zhou/QRscore")

Loading QRscore

After installation, load QRscore and its dependencies:

library(QRscore)
library(DESeq2)
library(BiocParallel)

Usage

Here’s a brief example of how to use QRscore in your analysis pipeline:

  1. Preparing Data: QRscore takes in RNA-seq count matrix and group labels as input and perform prefiltering and normalization.
data("example_dataset_raw_3000_genes")

bulk_sparse_mat = example_dataset_raw_3000_genes$COUNTS
ages = example_dataset_raw_3000_genes$METADATA$AGE

## filter out low expressed genes
col_means <- colMeans(bulk_sparse_mat, na.rm = TRUE)
col_zeros <- colMeans(bulk_sparse_mat==0, na.rm = TRUE)
col_ids <- which(col_means>5&col_zeros<0.2) # The threshold can be modified

## normalization
bulk_df = bulk_sparse_mat[,col_ids]
bulk_df_inv = t(bulk_df)
coldata = data.frame(age = ages)
dds <- DESeqDataSetFromMatrix(countData = bulk_df_inv,
                                colData = coldata,
                                design = ~ age)
dds = estimateSizeFactors(dds)
normalized_mat <- counts(dds, normalized=TRUE)
  1. Running Analysis: Example code for setting up and performing the QRscore analysis.
kept_samples = coldata$age %in% c("40-49", "60-69")
normalized_mat = normalized_mat[, kept_samples]
coldata = coldata[kept_samples,]
results <- QRscore.genetest(normalized_mat_1, coldata_1, pairwise_test = TRUE, pairwise_logFC = TRUE, test_mean = TRUE, test_dispersion = TRUE, num_cores = 4, approx = "asymptotic")
  1. Interpreting Results: QRscore outputs include differential expression and differential dispersion p-values, together with log Fold Change and log Variance Change.

License

GPL (>= 3)

References

For more information and detailed usage, refer to the QRscore vignette, documentation and package help files.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages