Level Set Learning with Pseudo-Reversible Neural Networks for Nonlinear Dimension Reduction in Function Approximation
Code repository for the paper:
Level Set Learning with Pseudo-Reversible Neural Networks for Nonlinear Dimension Reduction in Function Approximation
Yuankai Teng, Zhu Wang, Lili Ju, Anthony Gruber, Guannan Zhang
SIAM Journal on Scientific Computing, 2023
[paper]
To train the PRNN for a problem on given domain and draw a graph for regression
python ./train_model.py
--case 2
--dim 2
--hidden_layers 2
--hidden_neurons 20
--lam_adf 1
--lam_bd 1
--optimizer 'Adam'
--Test_Mode 'LocalFitting'
--epochs_Adam 5000
--epochs_LBFGS 200
--TrainNum 2000
--coeff_para 50
--sigma 0.01
--domain 0 1
To evaluate numerical error and relative sensitivity
python ./evaluate_model.py
--case 2
--dim 2
--hidden_layers 2
--hidden_neurons 20
--lam_adf 1
--lam_bd 1
--optimizer 'Adam'
--Test_Mode 'LocalFitting'
--epochs_Adam 5000
--epochs_LBFGS 200
--TrainNum 2000
--coeff_para 50
--sigma 0.01
--domain 0 1
If you find the idea or code of this paper useful for your research, please consider citing us:
@article{teng2023level,
title={Level Set Learning with Pseudoreversible Neural Networks for Nonlinear Dimension Reduction in Function Approximation},
author={Teng, Yuankai and Wang, Zhu and Ju, Lili and Gruber, Anthony and Zhang, Guannan},
journal={SIAM Journal on Scientific Computing},
volume={45},
number={3},
pages={A1148--A1171},
year={2023},
publisher={SIAM}
}