Skip to content

sciai-lab/cl-tsne-umap

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This repository contains scripts and notebooks to reproduce the experiments in

From t-SNE to UMAP with contrastive learning ICLR 2023 (openreview, arxiv)
Sebastian Damrich, Niklas Böhm, Fred A Hamprecht, Dmitry Kobak

@inproceedings{damrich2023from,
  title={From $t$-{SNE} to {UMAP} with contrastive learning},
  author={Damrich, Sebastian and B{\"o}hm, Jan Niklas  and Hamprecht, Fred A and Kobak, Dmitry},
  booktitle={International Conference on Learning Representations},
  year={2023},
}

It depends on several other repositories, in particular contrastive-ne, which implement the actual logic and contain utilities.

Installation

Create and activate the conda environment

conda env create -f environment.yml
conda activate cl_tsne_umap

Install openTSNE, vis_utis, umap, ncvis and cne

git clone https://github.com/sdamrich/openTSNE
cd openTSNE
python setup.py install
cd ..

git clone https://github.com/sdamrich/vis_utils
cd vis_utils
python setup.py install
cd ..

git clone https://github.com/sdamrich/UMAPs-true-loss
cd UMAPs-true-loss
python setup.py install
cd ..

git clone https://github.com/sdamrich/ncvis
cd ncvis
make libs
make wrapper

git clone -b iclr2023 https://github.com/berenslab/contrastive-ne
pip install --no-deps . 
cd ..

Usage

To reproduce the Neg-t-SNE embeddings from Fig. 1 a)-e), run

python scripts/compute_embds_cne.py

and check out the results in notebooks/negtsne.ipynb.

Neg-t-SNE on MNIST

To reproduce the UMAP embeddings from Fig. S1 a)-c), run

python scripts/compute_embds_umap.py

and check out the results in notebooks/umap_vs_negtsne.ipynb.

UMAP no annealing

To compute the metrics for the Neg-t-SNE embedding spectra (Fig. S4), run

python scripts/compute_metrics.py

and check out the results in notebooks/metrics.ipynb.

kNN recall and Spearmann correlation over spectra

To reproduce the run time by batch size analysis from Fig. S6, run

python scripts/run_time_by_batch_size.py

and check out the results in notebooks/speed_up.ipynb.

Run time by batch size

To reproduce the SimCLR experiments with m=16 and random seed r=0, run

python cne_scripts_notebooks/scripts/cifar10_acc.py -m 16 -r 0

The results will be printed in terminal but can also be checked out in notebooks/eval_cifar.ipynb.

For other experiments adapt the parameters at the top of compute_embds_cne.py and compute_embds_umap.py or at the top of the main function in cifar10_acc.py accordingly. The number of negative samples and the random seed for cifar10_acc.py can be passed as command line arguments, as above. Downloaded datasets and neighbor embedding results will be saved in cne_scripts_notebooks/data and figures will be saved in cne_scripts_notebooks/figures.

All neighbor embedding results alongside their parameters can be inspected in the jupyter notebooks in cne_scripts_notebooks/notebooks. This list details which figures can be inspected using which notebooks:

  • Fig 1: negtsne.ipynb, tsne.ipynb, ncvis.ipynb
  • Fig 2: umap_vs_negtsne.ipynb
  • Fig 3: parametric.ipynb
  • Fig S1: umap_vs_negtsne.ipynb
  • Fig S2: umap_vs_negtsne.ipynb
  • Fig S3: trimap.ipynb
  • Fig S4: metrics.ipynb
  • Fig S5: toy_experiment.ipynb
  • Fig S6: speed_up.ipynb
  • Fig S7: attr_rep_plot_UMAP_neg.ipynb
  • Fig S8: umap_vs_negtsne_vary_n_noise.ipynb
  • Fig S9: tsne_vs_ncvis.ipynb
  • Fig S10: tsne_vs_ncvis.ipynb
  • Fig S11: negtsne.ipynb, tsne_ipynb, ncvis.ipynb
  • Fig S12: imba_mnist_negtsne.ipynb, imba_mnist_tsne_ncvis_umap.ipynb
  • Fig S13: human_negtsne.ipynb, human_tsne_ncvis_umap.ipynb
  • Fig S14: zebrafish_negtsne.ipynb, zebrafish_tsne_ncvis_umap.ipynb
  • Fig S15: c_elegans_negtsne.ipynb, c_elegans_tsne_ncvis_umap.ipynb
  • Fig S16: k49_negtsne.ipynb, k49_tsne_ncvis_umap.ipynb
  • Fig S17: k49_negtsne.ipynb
  • Fig S18: ncvis.ipynb, tsne.ipynb
  • Fig S19: infonctsne.ipynb, tsne.ipynb
  • Tab 1: eval_cifar.ipynb

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published