Skip to content

The Sentiment Analysis project is designed to offer users a nuanced understanding of sentiment in user-provided text or URLs. Through the application of sophisticated Natural Language Processing.

Notifications You must be signed in to change notification settings

sayakdeepghosh01/Sentiment-Analysis-Project-

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Sentiment-Analysis-Project-

SentimentAnalysisProjectDocumentation

Overview:

TheSentimentAnalysisprojectaimstoanalyzethesentimentofuser-providedtextorURLs. Theapplicationprovidesuserswithinsightsintothesentimentscore,sentimentlabel(positive ornegative),andthetopreasonsforscoreincrementanddecrement.

Features:

SentimentAnalysis:

● UserscanentertextorURLsforsentimentanalysis.
● TheapplicationusesNaturalLanguageProcessing(NLP)techniquestocalculatethe
sentimentscore.
● Sentimentlabels(positiveornegative)areprovidedbasedonthesentimentscore.

TopReasons:

● Theapplicationliststhetop 5 reasonsforbothscoreincrementanddecrement.
● Usersreceiveinsightsintowhatfactorscontributedtochangesinsentiment.

WebScraping:

● TheprojectincludeswebscrapingfunctionalitytofetchdatafromaspecifiedURL.
● Thescrapeddatacontributestotheoverallsentimentanalysisscore.

User-FriendlyInterface:

● Thewebinterfaceisdesignedtobeuser-friendlywithacleanandanimatedlayout.
● Userscaneasilyunderstandthesentimentanalysisresultsandreasons.

ProjectStructure

TheprojectfollowsaFlaskwebapplicationstructurewiththefollowingkeycomponents:

● app/:
○ __init__.py:InitializestheFlaskapplication.
○ routes.py:Definestheapplicationroutesandhandlesuserrequests.
○^1 utils.py:Containsutilityfunctionsforsentimentanalysisandwebscraping.
● run.py:ExecutestheFlaskapplication.
● templates/:
○ index.html:TheHTMLfilefortheuserinterface,incorporatingthedesignand
interactivityitalsocontainsadditionalstylingfortheapplicationwithcss.

GettingStarted

Prerequisites ● Python3.x ● Installprojectdependenciesbyrunning:pipinstall-rrequirements.txt ● RunningtheApplication

RunningtheApplication

  1. Navigatetotheprojectdirectory.
  2. RuntheFlaskapplication: Bash: pythonrun.py
Theapplicationwillbeaccessibleathttp://127.0.0.1:5000/inyourwebbrowser.

Usage

  1. EntertextoraURLintotheprovidedinputareaonthehomepage.
  2. Clickthe"AnalyzeSentiment"button.
  3. Viewthesentimentanalysisresults,includingthesentimentscore,label,andtop reasonsforscorechanges.

Drawbacks

Despitetheproject'scapabilities,therearesomedrawbackstobeawareof:

  1. Real-TimeImplementationChallenges :
a. Real-timesentimentanalysismayfacechallengesduetothedynamicnatureof
onlinecontent.
b. Theprojectmaynotcaptureinstantsentimentchangesoremergingtrendsin
real-time.
  1. ScoreGenerationComplexity :
a. Generatingsentimentscoresbasedonwebscrapinganduserinputinvolves
inherentcomplexities.
b. Factorssuchasdiversecontenttypesandevolvinglanguagepatternscan
impacttheaccuracyofsentimentscores.

Screenshots

BelowarescreenshotsshowcasingtheSentimentAnalysiswebapplication:

Negative Score

Figure1:NegativeScore

Positive_Score

Figure2:PositiveScore

Neutral Score

Figure3:NeutralScore(onaLinkedinprofile)

Conclusion

TheSentimentAnalysisprojectprovidesuserswithavaluabletooltounderstandthesentiment oftextorcontentonspecifiedURLs.Whiletheapplicationhasnotablefeatures,usersshould bemindfulofthelimitations,particularlyinreal-timeimplementationandscoregeneration complexities.

About

The Sentiment Analysis project is designed to offer users a nuanced understanding of sentiment in user-provided text or URLs. Through the application of sophisticated Natural Language Processing.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published