Skip to content
/ ETM Public
forked from adjidieng/ETM

Topic Modeling in Embedding Spaces

License

Notifications You must be signed in to change notification settings

sainiudit/ETM

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ETM

This is code that accompanies the paper titled "Topic Modeling in Embedding Spaces" by Adji B. Dieng, Francisco J. R. Ruiz, and David M. Blei. (Arxiv link: https://arxiv.org/abs/1907.04907)

ETM defines words and topics in the same embedding space. The likelihood of a word under ETM is a Categorical whose natural parameter is given by the dot product between the word embedding and its assigned topic's embedding. ETM is a document model that learns interpretable topics and word embeddings and is robust to large vocabularies that include rare words and stop words.

Dependencies

  • python 3.6.7
  • pytorch 1.1.0

To Run

To learn interpretable embeddings and topics using ETM on the 20NewsGroup dataset, run

python main.py --mode train --dataset 20ng --data_path data/20ng --num_topics 50 --train_embeddings 1 --epochs 1000

To evaluate perplexity on document completion, topic coherence, topic diversity, and visualize the topics/embeddings run

python main.py --mode eval --dataset 20ng --data_path data/20ng --num_topics 50 --train_embeddings 1 --tc 1 --td 1 --load_from CKPT_PATH

To learn interpretable topics using ETM with pre-fitted word embeddings (called Labelled-ETM in the paper) on the 20NewsGroup dataset:

  • first fit the word embeddings. For example to use simple skipgram you can run
python skipgram.py --data_file PATH_TO_DATA --emb_file PATH_TO_EMBEDDINGS --dim_rho 300 --iters 50 --window_size 4 
  • then run the following
python main.py --mode train --dataset 20ng --data_path data/20ng --emb_path PATH_TO_EMBEDDINGS --num_topics 50 --train_embeddings 0 --epochs 1000

Citation

@article{dieng2019topic,
  title={Topic modeling in embedding spaces},
  author={Dieng, Adji B and Ruiz, Francisco J R and Blei, David M},
  journal={arXiv preprint arXiv:1907.04907},
  year={2019}
}

About

Topic Modeling in Embedding Spaces

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%