This repository defines a set of Gradle plugins that enable the use of
jlink in Gradle builds. In general, this plugin strives to enable
developers to run tasks with jlink-created JREs or build distributions with embedded jlink JREs. Generally, this plugin
uses the provided java toolchain to locate a valid jlink
executable and uses that to create a minimal java runtime for
your application. This enables smaller, more secure, application distributions.
This Gradle plugin tightly integrates with the Gradle application plugin to make running applications via Gradle with jlink-created JREs easy and modifying distributions created by the application plugin to automatically use a jlink JRE rather than a user provided JRE.
This plugin applies the com.ryandens.jlink-application-run
, which configures the run
task to launch the java process
using the java launcher created by the com.ryandens.jlink-jre
. In addition, it applies the
com.ryandens.jlink-application-distribution
plugin which modifies the main distribution to include the custom runtime
built by com.ryandens.jlink-jre
. In addition, it replaces the application start script with one that uses the built-in
jlink java binary rather than the java binary discovered relative on the host.
plugins {
application
id("com.ryandens.jlink-application") version "0.4.1"
}
java {
toolchain {
languageVersion.set(JavaLanguageVersion.of(11))
}
}
application {
mainClass.set("yourMainClass")
}
jlinkJre {
modules.set(setOf("java.sql", "java.instrument")) // defaults to only java.base
}
This Gradle plugin tightly integrates with the [the jib-gradle-plugin
via the jib-extensions API to make building container images
via Gradle with jlink-created JREs easy. This plugin adds the JRE created by jlink-jre
plugin as a separate layer of
your container image and modify the entrypoint of your application to use the java
executable from the custom JRE
rather than expecting one to be on the path. It is recommended to override the default jib base image with a base image
that does not have java installed, in order to reap the most benefits of jlink. We recommend
gcr.io/distroless/java-base-debian11:nonroot-arm64@sha256:YOUR_PREFERRED_SHA_HERE
, replacing YOUR_PREFERRED_SHA_HERE
with the latest released image sha.
plugins {
application
id("com.google.cloud.tools.jib") version "3.3.1"
id("com.ryandens.jlink-jib") version "0.4.1"
}
java {
toolchain {
languageVersion.set(JavaLanguageVersion.of(21))
}
}
application {
mainClass.set("yourMainClass")
}
// this base image does not have a java installation
jib.from.image = "gcr.io/distroless/java-base-debian11:nonroot-arm64"
This enables two key advantages over traditional distroless images built by jib:
- Smaller image sizes. For a simple application previously based on the java 17 distorless image, I saw a reduction in size by 90 MB when using the
java-base-debian11:nonroot-arm64
image with a jlink JRE added compared tojava17-debian11:nonroot-arm64
- Enable the use of distroless images with modern java runtimes. Typically, the Google distroless project only creates container images for LTS releases of Java as defined by Oracle.
When building a container image for a different architecture than your host platform, you'll need to configure the jlink
task to use the java modules for your target platform. For example, when building a linux container image on OS X,
the default jlink-jre task will output a JRE for the OS X platform, so the resulting container image built by jib
would not be able to run the OS X native executables. In that case, it is recommended to use the
temurin-binaries-repository
, as shown below, to resolve the JDK for another platform, register a new JlinkJreTask
task for generating a JRE for the desired platform, and configure the jlink-jib
plugin to use the newJlinkJreTask
output as the source of the JRE that will be inserted into the container image.
plugins {
application
id("com.ryandens.jlink-jib") version "0.4.1"
id("com.ryandens.temurin-binaries-repository") version "0.4.1"
}
val jdk by configurations.creating {
isCanBeResolved = true
isCanBeConsumed = false
isVisible = false
}
dependencies {
jdk("temurin19-binaries:OpenJDK19U-jdk_aarch64_linux_hotspot_19.0.2_7:[email protected]")
}
val copyJdks = tasks.register<Copy>("copyJdks") {
from(provider {tarTree(jdk.singleFile)})
into(project.layout.buildDirectory.dir("jdks"))
}
java {
toolchain {
languageVersion.set(JavaLanguageVersion.of(21))
}
}
application {
mainClass.set("yourMainClass")
}
// this base image does not have a java installation
jib.from.image = "gcr.io/distroless/java-base-debian11:nonroot-arm64"
val linuxJlinkJre = project.tasks.register<JlinkJreTask>("linuxJlinkJre") {
// by default, JlinkJreTask uses the module path associated with the configured java toolchain that is executing
// the jlink command, but this can be overridden to instead point at a different jmods directory for the purpose
// of building a JRE for a different platform
this.modulePath.fileProvider(copyJdks.map { File(it.destinationDir, "jdk-19.0.2+7/jmods/") })
outputDirectory.set(file(layout.buildDirectory.dir("jlink-jre-linux")))
}
jlinkJib {
// by default, this plugin will include the JRE built by the jlinkJre task. Optionally, any directory can be used.
// this enables the default jlinkJre task to build a JRE for one platform and a custom JlinkJreTask to build a JRE
// for another platform
jlinkJre.value(linuxJlinkJre.map { it.outputDirectory.get() })
}
If all you want to do is create a custom runtime specific to an application, simply apply the jlink-jre
plugin and
specify the modules you would like in your runtime. Note that this requires the java plugin still as we need to know
which java toolchain to use for accessing the jlink binary. Simply run the jlinkJre
task to create the JRE in the
build directory of the project.
plugins {
java
id("com.ryandens.jlink-jre") version "0.4.1"
}
java {
toolchain {
languageVersion.set(JavaLanguageVersion.of(11))
}
}
jlinkJre {
modules.set(setOf("java.sql", "java.instrument")) // defaults to only java.base
}
// by default, the project toolchain is used, but this can be overridden at the task level
tasks.named<JlinkJreTask>(JlinkJrePlugin.JLINK_JRE_TASK_NAME) {
javaCompiler.set(javaToolchains.compilerFor {
languageVersion.set(JavaLanguageVersion.of(18))
})
}
// the created runtime can be leveraged in other tasks by accessing its custom java launcher
tasks.withType<JavaExec> {
javaLauncher.set(tasks.named<JlinkJreTask>(JlinkJrePlugin.JLINK_JRE_TASK_NAME).flatMap { it.javaLauncher })
}
// additional runtimes can be created and used in the same fashion
val jre11 = tasks.register<JlinkJreTask>("createJre11") {
modules.set(listOf("java.base"))
javaCompiler.set(javaToolchains.compilerFor {
languageVersion.set(JavaLanguageVersion.of(11))
})
}
tasks.register<JavaExec>("runOn11") {
javaLauncher.set(jre11.flatMap { it.javaLauncher })
classpath = sourceSets["main"].runtimeClasspath
mainClass.set("yourMainClass")
}