Initial Mosaic augmentation implementation #233
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
As per your given TODOs in the README, I thought it would be nice to add initial mosaic augmentation to this codebase. Original implementation is from YoloV5 repo, which I have slightly tweaked to fit here.
I currently do not have the hardware to train with this implementation, but I still would like to contribute. Thats how some of them look visualized from the train script in
img, target = create_dataset(args)
.
Sometimes the bboxes look off as well. If you give me any pointers to improve the implementation, or to test (on limited hardware) whether this augmentation works here, please let me know. I am willing to make changes if needed, as I am just starting in this deep learning world.
It does add an opencv dependency as per the original repo, so dont know whether that is a problem. Thanks!