Skip to content

Commit

Permalink
time in zone / dwell time demo (#1026)
Browse files Browse the repository at this point in the history
* initial commit

* initial stream processing script

* fix(pre_commit): 🎨 auto format pre-commit hooks

* work in progress

* fix(pre_commit): 🎨 auto format pre-commit hooks

* work in progress

* fix(pre_commit): 🎨 auto format pre-commit hooks

* ultralytics file and stream versions ready

* fix(pre_commit): 🎨 auto format pre-commit hooks

* ultralytics file and stream versions ready

* class based filtering

* fix(pre_commit): 🎨 auto format pre-commit hooks

* timer improvements

* inference static file processing script

* fix(pre_commit): 🎨 auto format pre-commit hooks

* inference stream processing script

* fix(pre_commit): 🎨 auto format pre-commit hooks

* all scripts are working

* fix(pre_commit): 🎨 auto format pre-commit hooks

* all video or stream processing scripts refactored

* fix(pre_commit): 🎨 auto format pre-commit hooks

* README.md update

* fix(pre_commit): 🎨 auto format pre-commit hooks

* initial version of draw ones script

* fix(pre_commit): 🎨 auto format pre-commit hooks

* loading image or video, drawing multiple polygons, quiting app, and aborting currently drawn polygon works.

* fix(pre_commit): 🎨 auto format pre-commit hooks

* loading image or video, drawing multiple polygons, quiting app, and aborting currently drawn polygon works.

* fix(pre_commit): 🎨 auto format pre-commit hooks

* Dynamic drawing of currently edited polygon.

* fix(pre_commit): 🎨 auto format pre-commit hooks

* Drawing tool is ready.

* fix(pre_commit): 🎨 auto format pre-commit hooks

* Final touches.

* fix(pre_commit): 🎨 auto format pre-commit hooks

* Update README.md

* fix(pre_commit): 🎨 auto format pre-commit hooks

* Update README.md

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
SkalskiP and pre-commit-ci[bot] authored Mar 26, 2024
1 parent 42f9d4b commit 725d95c
Show file tree
Hide file tree
Showing 15 changed files with 1,659 additions and 0 deletions.
9 changes: 9 additions & 0 deletions examples/time_in_zone/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
data/
venv*/
*.pt
*.pth
*.mp4
*.mov
*.png
*.jpg
*.jpeg
262 changes: 262 additions & 0 deletions examples/time_in_zone/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,262 @@
# time in zone

## 👋 hello

Practical demonstration on leveraging computer vision for analyzing wait times and
monitoring the duration that objects or individuals spend in predefined areas of video
frames. This example project, perfect for retail analytics or traffic management
applications.

https://github.com/roboflow/supervision/assets/26109316/d051cc8a-dd15-41d4-aa36-d38b86334c39

## 💻 install

- clone repository and navigate to example directory

```bash
git clone https://github.com/roboflow/supervision.git
cd supervision/examples/time_in_zone
```

- setup python environment and activate it [optional]

```bash
python3 -m venv venv
source venv/bin/activate
```

- install required dependencies

```bash
pip install -r requirements.txt
```

## 🛠 scripts

### `download_from_youtube`

This script allows you to download a video from YouTube.

- `--url`: The full URL of the YouTube video you wish to download.
- `--output_path` (optional): Specifies the directory where the video will be saved.
- `--file_name` (optional): Sets the name of the saved video file.

```bash
python scripts/download_from_youtube.py \
--url "https://youtu.be/8zyEwAa50Q" \
--output_path "data/checkout" \
--file_name "video.mp4"
```

```bash
python scripts/download_from_youtube.py \
--url "https://youtu.be/MNn9qKG2UFI" \
--output_path "data/traffic" \
--file_name "video.mp4"
```

### `stream_from_file`

This script allows you to stream video files from a directory. It's an awesome way to
mock a live video stream for local testing. Video will be streamed in a loop under
`rtsp://localhost:8554/live0.stream` URL. This script requires docker to be installed.
- `--video_directory`: Directory containing video files to stream.
- `--number_of_streams`: Number of video files to stream.
```bash
python scripts/stream_from_file.py \
--video_directory "data/checkout" \
--number_of_streams 1
```
```bash
python scripts/stream_from_file.py \
--video_directory "data/traffic" \
--number_of_streams 1
```
### `draw_zones`
If you want to test zone time in zone analysis on your own video, you can use this
script to design custom zones and save results as a JSON file. The script will open a
window where you can draw polygons on the source image or video file. The polygons will
be saved as a JSON file.
- `--source_path`: Path to the source image or video file for drawing polygons.
- `--zone_configuration_path`: Path where the polygon annotations will be saved as a JSON file.
- `enter` - finish drawing the current polygon.
- `escape` - cancel drawing the current polygon.
- `q` - quit the drawing window.
- `s` - save zone configuration to a JSON file.
```bash
python scripts/draw_zones.py \
--source_path "data/checkout/video.mp4" \
--zone_configuration_path "data/checkout/custom_config.json"
```
```bash
python scripts/draw_zones.py \
--source_path "data/traffic/video.mp4" \
--zone_configuration_path "data/traffic/custom_config.json"
```
https://github.com/roboflow/supervision/assets/26109316/9d514c9e-2a61-418b-ae49-6ac1ad6ae5ac
## 🎬 video & stream processing
### `inference_file_example`
Script to run object detection on a video file using the Roboflow Inference model.
- `--zone_configuration_path`: Path to the zone configuration JSON file.
- `--source_video_path`: Path to the source video file.
- `--model_id`: Roboflow model ID.
- `--classes`: List of class IDs to track. If empty, all classes are tracked.
- `--confidence_threshold`: Confidence level for detections (`0` to `1`). Default is `0.3`.
- `--iou_threshold`: IOU threshold for non-max suppression. Default is `0.7`.
```bash
python inference_file_example.py \
--zone_configuration_path "data/checkout/config.json" \
--source_video_path "data/checkout/video.mp4" \
--model_id "yolov8x-640" \
--classes 0 \
--confidence_threshold 0.3 \
--iou_threshold 0.7
```
https://github.com/roboflow/supervision/assets/26109316/d051cc8a-dd15-41d4-aa36-d38b86334c39
```bash
python inference_file_example.py \
--zone_configuration_path "data/traffic/config.json" \
--source_video_path "data/traffic/video.mp4" \
--model_id "yolov8x-640" \
--classes 2 5 6 7 \
--confidence_threshold 0.3 \
--iou_threshold 0.7
```
https://github.com/roboflow/supervision/assets/26109316/5ec896d7-4b39-4426-8979-11e71666878b
### `inference_stream_example`
Script to run object detection on a video stream using the Roboflow Inference model.
- `--zone_configuration_path`: Path to the zone configuration JSON file.
- `--rtsp_url`: Complete RTSP URL for the video stream.
- `--model_id`: Roboflow model ID.
- `--classes`: List of class IDs to track. If empty, all classes are tracked.
- `--confidence_threshold`: Confidence level for detections (`0` to `1`). Default is `0.3`.
- `--iou_threshold`: IOU threshold for non-max suppression. Default is `0.7`.
```bash
python inference_file_example.py \
--zone_configuration_path "data/checkout/config.json" \
--rtsp_url "rtsp://localhost:8554/live0.stream" \
--model_id "yolov8x-640" \
--classes 0 \
--confidence_threshold 0.3 \
--iou_threshold 0.7
```
```bash
python inference_file_example.py \
--zone_configuration_path "data/traffic/config.json" \
--rtsp_url "rtsp://localhost:8554/live0.stream" \
--model_id "yolov8x-640" \
--classes 2 5 6 7 \
--confidence_threshold 0.3 \
--iou_threshold 0.7
```
<details>
<summary>👉 show ultralytics examples</summary>
### `ultralytics_file_example`
Script to run object detection on a video file using the Ultralytics YOLOv8 model.
- `--zone_configuration_path`: Path to the zone configuration JSON file.
- `--source_video_path`: Path to the source video file.
- `--weights`: Path to the model weights file. Default is `'yolov8s.pt'`.
- `--device`: Computation device (`'cpu'`, `'mps'` or `'cuda'`). Default is `'cpu'`.
- `--classes`: List of class IDs to track. If empty, all classes are tracked.
- `--confidence_threshold`: Confidence level for detections (`0` to `1`). Default is `0.3`.
- `--iou_threshold`: IOU threshold for non-max suppression. Default is `0.7`.
```bash
python inference_file_example.py \
--zone_configuration_path "data/checkout/config.json" \
--source_video_path "data/checkout/video.mp4" \
--weights "yolov8x.pt" \
--device "cpu" \
--classes 0 \
--confidence_threshold 0.3 \
--iou_threshold 0.7
```
```bash
python inference_file_example.py \
--zone_configuration_path "data/traffic/config.json" \
--source_video_path "data/traffic/video.mp4" \
--weights "yolov8x.pt" \
--device "cpu" \
--classes 2 5 6 7 \
--confidence_threshold 0.3 \
--iou_threshold 0.7
```
### `ultralytics_stream_example`
Script to run object detection on a video stream using the Ultralytics YOLOv8 model.
- `--zone_configuration_path`: Path to the zone configuration JSON file.
- `--rtsp_url`: Complete RTSP URL for the video stream.
- `--weights`: Path to the model weights file. Default is `'yolov8s.pt'`.
- `--device`: Computation device (`'cpu'`, `'mps'` or `'cuda'`). Default is `'cpu'`.
- `--classes`: List of class IDs to track. If empty, all classes are tracked.
- `--confidence_threshold`: Confidence level for detections (`0` to `1`). Default is `0.3`.
- `--iou_threshold`: IOU threshold for non-max suppression. Default is `0.7`.
```bash
python inference_file_example.py \
--zone_configuration_path "data/checkout/config.json" \
--rtsp_url "rtsp://localhost:8554/live0.stream" \
--weights "yolov8x.pt" \
--device "cpu" \
--classes 0 \
--confidence_threshold 0.3 \
--iou_threshold 0.7
```
```bash
python inference_file_example.py \
--zone_configuration_path "data/traffic/config.json" \
--rtsp_url "rtsp://localhost:8554/live0.stream" \
--weights "yolov8x.pt" \
--device "cpu" \
--classes 2 5 6 7 \
--confidence_threshold 0.3 \
--iou_threshold 0.7
```
</details>
## © license
This demo integrates two main components, each with its own licensing:
- ultralytics: The object detection model used in this demo, YOLOv8, is distributed
under the [AGPL-3.0 license](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
You can find more details about this license here.
- supervision: The analytics code that powers the zone-based analysis in this demo is
based on the Supervision library, which is licensed under the
[MIT license](https://github.com/roboflow/supervision/blob/develop/LICENSE.md). This
makes the Supervision part of the code fully open source and freely usable in your
projects.
Loading

0 comments on commit 725d95c

Please sign in to comment.