NEW: Converting new external dataset into TrajNet++ format. Tutorial
pip install -e '.[test,plot]'
pylint trajnetdataset
pytest
Existing real world data:
data/ data_arxiepiskopi.rar data_university_students.rar data_zara.rar ewap_dataset_light.tgz # 3DMOT2015Labels # from: https://motchallenge.net/data/3DMOT2015Labels.zip (video file at http://cs.binghamton.edu/~mrldata/public/PETS2009/S2_L1.tar.bz2) Train.zip # from trajnet.epfl.ch cvpr2015_pedestrianWalkingPathDataset.rar # from http://www.ee.cuhk.edu.hk/~syi/ (website not accessible but data are also here: https://www.dropbox.com/s/7y90xsxq0l0yv8d/cvpr2015_pedestrianWalkingPathDataset.rar?dl=0.+63) cff_dataset.zip # from https://www.dropbox.com/s/cnnk2ofreeoshuz/cff_dataset.zip?dl=0
Extract:
# biwi
mkdir -p data/raw/biwi
tar -xzf data/ewap_dataset_light.tgz --strip-components=1 -C data/raw/biwi
# crowds
mkdir -p data/raw/crowds
unrar e data/data_arxiepiskopi.rar data/raw/crowds
unrar e data/data_university_students.rar data/raw/crowds
unrar e data/data_zara.rar data/raw/crowds
# cff
mkdir -p data/raw/cff_dataset
unzip data/cff_dataset.zip -d data/raw/
rm -r data/raw/__MACOSX
# Wildtrack: https://www.epfl.ch/labs/cvlab/data/data-wildtrack/
mkdir -p data/raw/wildtrack
unzip data/Wildtrack_dataset_full.zip -d data/raw/wildtrack
# L-CAS: https://drive.google.com/drive/folders/1CPV9XeJsZzvtTxPQ9u1ppLGs_29e-XdQ
mkdir -p data/raw/lcas
cp data/lcas_pedestrian_dataset/minerva/train/data.csv data/raw/lcas
# pedestrian walking dataset
mkdir -p data/raw/syi
unrar e data/cvpr2015_pedestrianWalkingPathDataset.rar data/raw/syi
PETS09 S2L1 ground truth -- not used because people behavior is not normal
mkdir -p data/raw/mot
unzip data/3DMOT2015Labels.zip -d data/
cp data/3DMOT2015Labels/train/PETS09-S2L1/gt/gt.txt data/raw/mot/pets2009_s2l1.txt
# Edinburgh Informatics Forum tracker -- not used because tracks are not good enough
mkdir -p data/raw/edinburgh
wget -i edinburgh_informatics_forum_urls.txt -P data/raw/edinburgh/
Prepare synthetic data:
python -m trajnetdataset.controlled_data
Help menu for generating diverse synthetic data:
python -m trajnetdataset.controlled_data --help
python -m trajnetdataset.convert
The above command performs the following operations:
- Step 1. readers.py: reads the raw data files and converts them to trackrows in .ndjson format
- Step 2. scene.py: prepares different scenes given the obtained trackrows
- Step 3. get_type.py: categorizes each scene based on our defined trajectory categorization
# create plots to check new dataset
python -m trajnetplusplustools.summarize output/train/*.ndjson
# obtain new dataset statistics
python -m trajnetplusplustools.dataset_stats output/train/*.ndjson
# visualize sample scenes
python -m trajnetplusplustools.trajectories output/train/*.ndjson
- partial tracks are now included (for correct occupancy maps)
- pedestrians that appear in multiple chunks had the same id before (might be a problem for some input readers)
- explicit index of scenes with annotation of the primary pedestrian
# * the primary pedestrian has to move by more than 1 meter * at one point, the primary pedestrian has to be <3m away from another pedestrian
If you find this code useful in your research then please cite
@inproceedings{Kothari2020HumanTF, title={Human Trajectory Forecasting in Crowds: A Deep Learning Perspective}, author={Parth Kothari and Sven Kreiss and Alexandre Alahi}, year={2020} }
eth
:
@article{Pellegrini2009YoullNW, title={You'll never walk alone: Modeling social behavior for multi-target tracking}, author={Stefano Pellegrini and Andreas Ess and Konrad Schindler and Luc Van Gool}, journal={2009 IEEE 12th International Conference on Computer Vision}, year={2009}, pages={261-268} }
ucy
:
@article{Lerner2007CrowdsBE, title={Crowds by Example}, author={Alon Lerner and Yiorgos Chrysanthou and Dani Lischinski}, journal={Comput. Graph. Forum}, year={2007}, volume={26}, pages={655-664} }
wildtrack
:
@inproceedings{chavdarova-et-al-2018, author = "Chavdarova, T. and Baqué, P. and Bouquet, S. and Maksai, A. and Jose, C. and Bagautdinov, T. and Lettry, L. and Fua, P. and Van Gool, L. and Fleuret, F.", title = {{WILDTRACK}: A Multi-camera {HD} Dataset for Dense Unscripted Pedestrian Detection}, journal = "Proceedings of the IEEE international conference on Computer Vision and Pattern Recognition (CVPR)", year = 2018, }
L-CAS
:
@article{Sun20173DOFPT, title={3DOF Pedestrian Trajectory Prediction Learned from Long-Term Autonomous Mobile Robot Deployment Data}, author={Li Sun and Zhi Yan and Sergi Molina Mellado and Marc Hanheide and Tom Duckett}, journal={2018 IEEE International Conference on Robotics and Automation (ICRA)}, year={2017}, pages={1-7} }
CFF
:
@article{Alahi2014SociallyAwareLC, title={Socially-Aware Large-Scale Crowd Forecasting}, author={Alexandre Alahi and Vignesh Ramanathan and Fei-Fei Li}, journal={2014 IEEE Conference on Computer Vision and Pattern Recognition}, year={2014}, pages={2211-2218} }
syi
: Shuai Yi, Hongsheng Li, and Xiaogang Wang. Understanding Pedestrian Behaviors from Stationary Crowd Groups. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015).edinburgh
: B. Majecka, "Statistical models of pedestrian behaviour in the Forum", MSc Dissertation, School of Informatics, University of Edinburgh, 2009.