Add support for Array API in NamedArray #11183
2 errors, 2 867 fail, 1 627 skipped, 15 757 pass in 1h 27m 42s
Annotations
Check warning on line 0 in xarray.tests.test_array_api
github-actions / Test Results
5 out of 8 runs failed: test_aggregation (xarray.tests.test_array_api)
artifacts/Test results for Linux-3.10 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10/pytest.xml [took 0s]
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Windows-3.10/pytest.xml [took 0s]
artifacts/Test results for macOS-3.10/pytest.xml [took 0s]
Raw output
ValueError: x must be at least 2-dimensional for matrix_transpose
arrays = (<xarray.DataArray (x: 2, y: 3)> Size: 48B
array([[ 1., 2., 3.],
[ 4., 5., nan]])
Coordinates:
* x ...nan]], dtype=array_api_strict.float64)
Coordinates:
* x (x) int64 16B 10 20
Dimensions without coordinates: y)
def test_aggregation(arrays: tuple[xr.DataArray, xr.DataArray]) -> None:
np_arr, xp_arr = arrays
expected = np_arr.sum()
> actual = xp_arr.sum()
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_array_api.py#x1B[0m:41:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/_aggregations.py#x1B[0m:1857: in sum
return self.reduce(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataarray.py#x1B[0m:3837: in reduce
var = self.variable.reduce(func, dim, axis, keep_attrs, keepdims, **kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/variable.py#x1B[0m:1678: in reduce
result = super().reduce(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/namedarray/core.py#x1B[0m:1396: in reduce
return from_array(dims, data, attrs=self._attrs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/namedarray/core.py#x1B[0m:212: in from_array
if isinstance(data, _arrayfunction_or_api):
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.11/typing.py#x1B[0m:2025: in __instancecheck__
if all(hasattr(instance, attr) and
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.11/typing.py#x1B[0m:2025: in <genexpr>
if all(hasattr(instance, attr) and
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.11/site-packages/array_api_strict/_array_object.py#x1B[0m:1178: in mT
return matrix_transpose(self)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
x = Array(15., dtype=array_api_strict.float64)
def matrix_transpose(x: Array, /) -> Array:
if x.ndim < 2:
> raise ValueError("x must be at least 2-dimensional for matrix_transpose")
#x1B[1m#x1B[31mE ValueError: x must be at least 2-dimensional for matrix_transpose#x1B[0m
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.11/site-packages/array_api_strict/_linear_algebra_functions.py#x1B[0m:50: ValueError
Check warning on line 0 in xarray.tests.test_array_api
github-actions / Test Results
5 out of 8 runs failed: test_aggregation_skipna (xarray.tests.test_array_api)
artifacts/Test results for Linux-3.10 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10/pytest.xml [took 0s]
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Windows-3.10/pytest.xml [took 0s]
artifacts/Test results for macOS-3.10/pytest.xml [took 0s]
Raw output
ValueError: x must be at least 2-dimensional for matrix_transpose
arrays = (<xarray.DataArray (x: 2, y: 3)> Size: 48B
array([[ 1., 2., 3.],
[ 4., 5., nan]])
Coordinates:
* x ...nan]], dtype=array_api_strict.float64)
Coordinates:
* x (x) int64 16B 10 20
Dimensions without coordinates: y)
def test_aggregation_skipna(arrays) -> None:
np_arr, xp_arr = arrays
expected = np_arr.sum(skipna=False)
> actual = xp_arr.sum(skipna=False)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_array_api.py#x1B[0m:49:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/_aggregations.py#x1B[0m:1857: in sum
return self.reduce(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/dataarray.py#x1B[0m:3837: in reduce
var = self.variable.reduce(func, dim, axis, keep_attrs, keepdims, **kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/variable.py#x1B[0m:1678: in reduce
result = super().reduce(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/namedarray/core.py#x1B[0m:1396: in reduce
return from_array(dims, data, attrs=self._attrs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/namedarray/core.py#x1B[0m:212: in from_array
if isinstance(data, _arrayfunction_or_api):
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.11/typing.py#x1B[0m:2025: in __instancecheck__
if all(hasattr(instance, attr) and
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.11/typing.py#x1B[0m:2025: in <genexpr>
if all(hasattr(instance, attr) and
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.11/site-packages/array_api_strict/_array_object.py#x1B[0m:1178: in mT
return matrix_transpose(self)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
x = Array(nan, dtype=array_api_strict.float64)
def matrix_transpose(x: Array, /) -> Array:
if x.ndim < 2:
> raise ValueError("x must be at least 2-dimensional for matrix_transpose")
#x1B[1m#x1B[31mE ValueError: x must be at least 2-dimensional for matrix_transpose#x1B[0m
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.11/site-packages/array_api_strict/_linear_algebra_functions.py#x1B[0m:50: ValueError
Check warning on line 0 in xarray.tests.test_assertions
github-actions / Test Results
1 out of 9 runs failed: test_assert_allclose[Dataset] (xarray.tests.test_assertions)
artifacts/Test results for Linux-3.10 bare-minimum/pytest.xml [took 0s]
Raw output
AttributeError: module 'numpy' has no attribute 'bool'.
`np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:
https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations. Did you mean: 'bool_'?
obj1 = <xarray.Dataset> Size: 32B
Dimensions: (x: 2, y: 2)
Dimensions without coordinates: x, y
Data variables:
a (x) float64 16B 1e-17 2.0
b (y) float64 16B -2e-18 2.0
obj2 = <xarray.Dataset> Size: 32B
Dimensions: (x: 2, y: 2)
Dimensions without coordinates: x, y
Data variables:
a (x) int64 16B 0 2
b (y) int64 16B 0 1
@pytest.mark.parametrize(
"obj1,obj2",
(
pytest.param(
xr.Variable("x", [1e-17, 2]), xr.Variable("x", [0, 3]), id="Variable"
),
pytest.param(
xr.DataArray([1e-17, 2], dims="x"),
xr.DataArray([0, 3], dims="x"),
id="DataArray",
),
pytest.param(
xr.Dataset({"a": ("x", [1e-17, 2]), "b": ("y", [-2e-18, 2])}),
xr.Dataset({"a": ("x", [0, 2]), "b": ("y", [0, 1])}),
id="Dataset",
),
pytest.param(
xr.DataArray(np.array("a", dtype="|S1")),
xr.DataArray(np.array("b", dtype="|S1")),
id="DataArray_with_character_dtype",
),
),
)
def test_assert_allclose(obj1, obj2) -> None:
with pytest.raises(AssertionError):
> xr.testing.assert_allclose(obj1, obj2)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_assertions.py#x1B[0m:64:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/formatting.py#x1B[0m:1025: in diff_dataset_repr
diff_data_vars_repr(a.data_vars, b.data_vars, compat, col_width=col_width)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/formatting.py#x1B[0m:858: in _diff_mapping_repr
summarizer(k, a_mapping[k], col_width, **a_summarizer_kwargs[k]),
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/formatting.py#x1B[0m:345: in summarize_variable
nbytes_str = f" {render_human_readable_nbytes(variable.nbytes)}"
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/namedarray/core.py#x1B[0m:925: in nbytes
from xarray.namedarray._array_api._utils import _get_data_namespace
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/namedarray/_array_api/__init__.py#x1B[0m:71: in <module>
from xarray.namedarray._array_api._dtypes import (
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/namedarray/_array_api/_dtypes.py#x1B[0m:18: in <module>
bool = _xp.bool
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
attr = 'bool'
def __getattr__(attr):
# Warn for expired attributes, and return a dummy function
# that always raises an exception.
import warnings
try:
msg = __expired_functions__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
def _expired(*args, **kwds):
raise RuntimeError(msg)
return _expired
# Emit warnings for deprecated attributes
try:
val, msg = __deprecated_attrs__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
return val
if attr in __future_scalars__:
# And future warnings for those that will change, but also give
# the AttributeError
warnings.warn(
f"In the future `np.{attr}` will be defined as the "
"corresponding NumPy scalar.", FutureWarning, stacklevel=2)
if attr in __former_attrs__:
> raise AttributeError(__former_attrs__[attr])
#x1B[1m#x1B[31mE AttributeError: module 'numpy' has no attribute 'bool'.#x1B[0m
#x1B[1m#x1B[31mE `np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.#x1B[0m
#x1B[1m#x1B[31mE The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:#x1B[0m
#x1B[1m#x1B[31mE https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations. Did you mean: 'bool_'?#x1B[0m
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.10/site-packages/numpy/__init__.py#x1B[0m:305: AttributeError
Check warning on line 0 in xarray.tests.test_assertions
github-actions / Test Results
4 out of 9 runs failed: test_ensure_warnings_not_elevated[assert_duckarray_equal] (xarray.tests.test_assertions)
artifacts/Test results for Linux-3.10 bare-minimum/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Windows-3.10/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
Raw output
AttributeError: module 'numpy' has no attribute 'bool'.
`np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:
https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations. Did you mean: 'bool_'?
func = 'assert_duckarray_equal'
@pytest.mark.parametrize(
"func",
[
"assert_equal",
"assert_identical",
"assert_allclose",
"assert_duckarray_equal",
"assert_duckarray_allclose",
],
)
def test_ensure_warnings_not_elevated(func) -> None:
# make sure warnings are not elevated to errors in the assertion functions
# e.g. by @pytest.mark.filterwarnings("error")
# see https://github.com/pydata/xarray/pull/4760#issuecomment-774101639
# define a custom Variable class that raises a warning in assert_*
class WarningVariable(xr.Variable):
@property # type: ignore[misc]
def dims(self):
warnings.warn("warning in test", stacklevel=2)
return super().dims
def __array__(
self, dtype: np.typing.DTypeLike = None, /, *, copy: bool | None = None
) -> np.ndarray:
warnings.warn("warning in test", stacklevel=2)
return super().__array__(dtype, copy=copy)
a = WarningVariable("x", [1])
b = WarningVariable("x", [2])
with warnings.catch_warnings(record=True) as w:
# elevate warnings to errors
warnings.filterwarnings("error")
with pytest.raises(AssertionError):
> getattr(xr.testing, func)(a, b)
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\tests\test_assertions.py#x1B[0m:189:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\duck_array_ops.py#x1B[0m:314: in array_equiv
flag_array = (arr1 == arr2) | (isnull(arr1) & isnull(arr2))
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\duck_array_ops.py#x1B[0m:137: in isnull
xp = get_array_namespace(data)
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\duck_array_ops.py#x1B[0m:65: in get_array_namespace
namespaces = {_get_array_namespace(t) for t in values}
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\duck_array_ops.py#x1B[0m:61: in _get_array_namespace
return x.__array_namespace__()
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\core.py#x1B[0m:462: in __array_namespace__
import xarray.namedarray._array_api as array_api
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\__init__.py#x1B[0m:71: in <module>
from xarray.namedarray._array_api._dtypes import (
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\_dtypes.py#x1B[0m:18: in <module>
bool = _xp.bool
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
attr = 'bool'
def __getattr__(attr):
# Warn for expired attributes, and return a dummy function
# that always raises an exception.
import warnings
import math
try:
msg = __expired_functions__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
def _expired(*args, **kwds):
raise RuntimeError(msg)
return _expired
# Emit warnings for deprecated attributes
try:
val, msg = __deprecated_attrs__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
return val
if attr in __future_scalars__:
# And future warnings for those that will change, but also give
# the AttributeError
warnings.warn(
f"In the future `np.{attr}` will be defined as the "
"corresponding NumPy scalar.", FutureWarning, stacklevel=2)
if attr in __former_attrs__:
> raise AttributeError(__former_attrs__[attr])
#x1B[1m#x1B[31mE AttributeError: module 'numpy' has no attribute 'bool'.#x1B[0m
#x1B[1m#x1B[31mE `np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.#x1B[0m
#x1B[1m#x1B[31mE The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:#x1B[0m
#x1B[1m#x1B[31mE https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations. Did you mean: 'bool_'?#x1B[0m
#x1B[1m#x1B[31mC:\Users\runneradmin\micromamba\envs\xarray-tests\Lib\site-packages\numpy\__init__.py#x1B[0m:324: AttributeError
Check warning on line 0 in xarray.tests.test_computation
github-actions / Test Results
1 out of 9 runs failed: test_apply_missing_dims (xarray.tests.test_computation)
artifacts/Test results for Linux-3.10 bare-minimum/pytest.xml [took 0s]
Raw output
FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.
def test_apply_missing_dims() -> None:
## Single arg
def add_one(a, core_dims, on_missing_core_dim):
return apply_ufunc(
lambda x: x + 1,
a,
input_core_dims=core_dims,
output_core_dims=core_dims,
on_missing_core_dim=on_missing_core_dim,
)
array = np.arange(6).reshape(2, 3)
variable = xr.Variable(["x", "y"], array)
variable_no_y = xr.Variable(["x", "z"], array)
ds = xr.Dataset({"x_y": variable, "x_z": variable_no_y})
# Check the standard stuff works OK
assert_identical(
add_one(ds[["x_y"]], core_dims=[["y"]], on_missing_core_dim="raise"),
ds[["x_y"]] + 1,
)
# `raise` — should raise on a missing dim
with pytest.raises(ValueError):
> add_one(ds, core_dims=[["y"]], on_missing_core_dim="raise")
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_computation.py#x1B[0m:286:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_computation.py#x1B[0m:264: in add_one
return apply_ufunc(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/computation.py#x1B[0m:1265: in apply_ufunc
return apply_dataset_vfunc(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/computation.py#x1B[0m:536: in apply_dataset_vfunc
result_vars = apply_dict_of_variables_vfunc(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/computation.py#x1B[0m:458: in apply_dict_of_variables_vfunc
core_dim_present = _check_core_dims(signature, variable_args, name)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/computation.py#x1B[0m:435: in _check_core_dims
message += f"Missing core dims {set(core_dims) - set(variable_arg.dims)} from arg number {i + 1} on a variable named `{name}`:\n{variable_arg}\n\n"
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/common.py#x1B[0m:205: in __format__
return self.__repr__()
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/common.py#x1B[0m:183: in __repr__
return formatting.array_repr(self)
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.10/reprlib.py#x1B[0m:21: in wrapper
result = user_function(self)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/formatting.py#x1B[0m:698: in array_repr
nbytes_str = render_human_readable_nbytes(arr.nbytes)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/namedarray/core.py#x1B[0m:925: in nbytes
from xarray.namedarray._array_api._utils import _get_data_namespace
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/namedarray/_array_api/__init__.py#x1B[0m:71: in <module>
from xarray.namedarray._array_api._dtypes import (
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/namedarray/_array_api/_dtypes.py#x1B[0m:18: in <module>
bool = _xp.bool
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
attr = 'bool'
def __getattr__(attr):
# Warn for expired attributes, and return a dummy function
# that always raises an exception.
import warnings
try:
msg = __expired_functions__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
def _expired(*args, **kwds):
raise RuntimeError(msg)
return _expired
# Emit warnings for deprecated attributes
try:
val, msg = __deprecated_attrs__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
return val
if attr in __future_scalars__:
# And future warnings for those that will change, but also give
# the AttributeError
> warnings.warn(
f"In the future `np.{attr}` will be defined as the "
"corresponding NumPy scalar.", FutureWarning, stacklevel=2)
#x1B[1m#x1B[31mE FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.#x1B[0m
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.10/site-packages/numpy/__init__.py#x1B[0m:300: FutureWarning
Check warning on line 0 in xarray.tests.test_dataset.TestDataset
github-actions / Test Results
1 out of 9 runs failed: test_copy_coords[False-expected_orig1] (xarray.tests.test_dataset.TestDataset)
artifacts/Test results for Linux-3.10 bare-minimum/pytest.xml [took 0s]
Raw output
AttributeError: module 'numpy' has no attribute 'bool'.
`np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:
https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations. Did you mean: 'bool_'?
self = <xarray.tests.test_dataset.TestDataset object at 0x7fb6861ec190>
deep = False
expected_orig = <xarray.DataArray 'a' (a: 2)> Size: 16B
array([999, 2])
Coordinates:
* a (a) int64 16B 999 2
@pytest.mark.xfail(raises=AssertionError)
@pytest.mark.parametrize(
"deep, expected_orig",
[
[
True,
xr.DataArray(
xr.IndexVariable("a", np.array([1, 2])),
coords={"a": [1, 2]},
dims=["a"],
),
],
[
False,
xr.DataArray(
xr.IndexVariable("a", np.array([999, 2])),
coords={"a": [999, 2]},
dims=["a"],
),
],
],
)
def test_copy_coords(self, deep, expected_orig) -> None:
"""The test fails for the shallow copy, and apparently only on Windows
for some reason. In windows coords seem to be immutable unless it's one
dataset deep copied from another."""
ds = xr.DataArray(
np.ones([2, 2, 2]),
coords={"a": [1, 2], "b": ["x", "y"], "c": [0, 1]},
dims=["a", "b", "c"],
name="value",
).to_dataset()
ds_cp = ds.copy(deep=deep)
new_a = np.array([999, 2])
ds_cp.coords["a"] = ds_cp.a.copy(data=new_a)
expected_cp = xr.DataArray(
xr.IndexVariable("a", new_a),
coords={"a": [999, 2]},
dims=["a"],
)
assert_identical(ds_cp.coords["a"], expected_cp)
> assert_identical(ds.coords["a"], expected_orig)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_dataset.py#x1B[0m:3024:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/formatting.py#x1B[0m:975: in diff_array_repr
diff_coords_repr(a.coords, b.coords, compat, col_width=col_width)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/formatting.py#x1B[0m:918: in diff_coords_repr
return _diff_mapping_repr(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/formatting.py#x1B[0m:858: in _diff_mapping_repr
summarizer(k, a_mapping[k], col_width, **a_summarizer_kwargs[k]),
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/formatting.py#x1B[0m:345: in summarize_variable
nbytes_str = f" {render_human_readable_nbytes(variable.nbytes)}"
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/namedarray/core.py#x1B[0m:925: in nbytes
from xarray.namedarray._array_api._utils import _get_data_namespace
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/namedarray/_array_api/__init__.py#x1B[0m:71: in <module>
from xarray.namedarray._array_api._dtypes import (
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/namedarray/_array_api/_dtypes.py#x1B[0m:18: in <module>
bool = _xp.bool
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
attr = 'bool'
def __getattr__(attr):
# Warn for expired attributes, and return a dummy function
# that always raises an exception.
import warnings
try:
msg = __expired_functions__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
def _expired(*args, **kwds):
raise RuntimeError(msg)
return _expired
# Emit warnings for deprecated attributes
try:
val, msg = __deprecated_attrs__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
return val
if attr in __future_scalars__:
# And future warnings for those that will change, but also give
# the AttributeError
warnings.warn(
f"In the future `np.{attr}` will be defined as the "
"corresponding NumPy scalar.", FutureWarning, stacklevel=2)
if attr in __former_attrs__:
> raise AttributeError(__former_attrs__[attr])
#x1B[1m#x1B[31mE AttributeError: module 'numpy' has no attribute 'bool'.#x1B[0m
#x1B[1m#x1B[31mE `np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.#x1B[0m
#x1B[1m#x1B[31mE The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:#x1B[0m
#x1B[1m#x1B[31mE https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations. Did you mean: 'bool_'?#x1B[0m
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.10/site-packages/numpy/__init__.py#x1B[0m:305: AttributeError
Check warning on line 0 in xarray.tests.test_namedarray.TestNamedArray
github-actions / Test Results
All 9 runs failed: test_from_array_with_explicitly_indexed (xarray.tests.test_namedarray.TestNamedArray)
artifacts/Test results for Linux-3.10 bare-minimum/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10/pytest.xml [took 0s]
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Windows-3.10/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.10/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
Raw output
AssertionError: assert False
+ where False = isinstance(array([[[ 0., 1., 2., 3., 4.],\n [ 5., 6., 7., 8., 9.],\n [10., 11., 12., 13., 14.],\n [15.,... [45., 46., 47., 48., 49.],\n [50., 51., 52., 53., 54.],\n [55., 56., 57., 58., 59.]]], dtype=float32), CustomArrayIndexable)
+ where array([[[ 0., 1., 2., 3., 4.],\n [ 5., 6., 7., 8., 9.],\n [10., 11., 12., 13., 14.],\n [15.,... [45., 46., 47., 48., 49.],\n [50., 51., 52., 53., 54.],\n [55., 56., 57., 58., 59.]]], dtype=float32) = <Namedarray, shape=(3, 4, 5), dims=('x', 'y', 'z'), dtype=float32, data=[[[ 0. 1. 2. 3. 4.]\n [ 5. 6. 7. 8. 9..... 36. 37. 38. 39.]]\n\n [[40. 41. 42. 43. 44.]\n [45. 46. 47. 48. 49.]\n [50. 51. 52. 53. 54.]\n [55. 56. 57. 58. 59.]]]>.data
self = <xarray.tests.test_namedarray.TestNamedArray object at 0x7ffa627ace90>
random_inputs = array([[[ 0., 1., 2., 3., 4.],
[ 5., 6., 7., 8., 9.],
[10., 11., 12., 13., 14.],
[15.,... [45., 46., 47., 48., 49.],
[50., 51., 52., 53., 54.],
[55., 56., 57., 58., 59.]]], dtype=float32)
def test_from_array_with_explicitly_indexed(
self, random_inputs: np.ndarray[Any, Any]
) -> None:
array: CustomArray[Any, Any]
array = CustomArray(random_inputs)
output: NamedArray[Any, Any]
output = from_array(("x", "y", "z"), array)
assert isinstance(output.data, np.ndarray)
array2: CustomArrayIndexable[Any, Any]
array2 = CustomArrayIndexable(random_inputs)
output2: NamedArray[Any, Any]
output2 = from_array(("x", "y", "z"), array2)
> assert isinstance(output2.data, CustomArrayIndexable)
#x1B[1m#x1B[31mE AssertionError: assert False#x1B[0m
#x1B[1m#x1B[31mE + where False = isinstance(array([[[ 0., 1., 2., 3., 4.],\n [ 5., 6., 7., 8., 9.],\n [10., 11., 12., 13., 14.],\n [15.,... [45., 46., 47., 48., 49.],\n [50., 51., 52., 53., 54.],\n [55., 56., 57., 58., 59.]]], dtype=float32), CustomArrayIndexable)#x1B[0m
#x1B[1m#x1B[31mE + where array([[[ 0., 1., 2., 3., 4.],\n [ 5., 6., 7., 8., 9.],\n [10., 11., 12., 13., 14.],\n [15.,... [45., 46., 47., 48., 49.],\n [50., 51., 52., 53., 54.],\n [55., 56., 57., 58., 59.]]], dtype=float32) = <Namedarray, shape=(3, 4, 5), dims=('x', 'y', 'z'), dtype=float32, data=[[[ 0. 1. 2. 3. 4.]\n [ 5. 6. 7. 8. 9..... 36. 37. 38. 39.]]\n\n [[40. 41. 42. 43. 44.]\n [45. 46. 47. 48. 49.]\n [50. 51. 52. 53. 54.]\n [55. 56. 57. 58. 59.]]]>.data#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_namedarray.py#x1B[0m:265: AssertionError
Check warning on line 0 in xarray.tests.test_namedarray.TestNamedArray
github-actions / Test Results
3 out of 9 runs failed: test_real_and_imag (xarray.tests.test_namedarray.TestNamedArray)
artifacts/Test results for Linux-3.10/pytest.xml [took 0s]
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for macOS-3.10/pytest.xml [took 0s]
Raw output
ValueError: matrix transpose with ndim < 2 is undefined
self = <xarray.tests.test_namedarray.TestNamedArray object at 0x7ffa627ac310>
def test_real_and_imag(self) -> None:
expected_real: np.ndarray[Any, np.dtype[np.float64]]
expected_real = np.arange(3, dtype=np.float64)
expected_imag: np.ndarray[Any, np.dtype[np.float64]]
expected_imag = -np.arange(3, dtype=np.float64)
arr: np.ndarray[Any, np.dtype[np.complex128]]
arr = expected_real + 1j * expected_imag
named_array: NamedArray[Any, np.dtype[np.complex128]]
named_array = NamedArray(["x"], arr)
> actual_real: duckarray[Any, np.dtype[np.float64]] = named_array.real.data
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_namedarray.py#x1B[0m:280:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/namedarray/core.py#x1B[0m:1038: in real
if isinstance(self._data, _arrayapi):
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.11/typing.py#x1B[0m:2025: in __instancecheck__
if all(hasattr(instance, attr) and
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.0 = <set_iterator object at 0x7ffa5eae44c0>
> if all(hasattr(instance, attr) and
# All *methods* can be blocked by setting them to None.
(not callable(getattr(cls, attr, None)) or
getattr(instance, attr) is not None)
for attr in _get_protocol_attrs(cls)):
#x1B[1m#x1B[31mE ValueError: matrix transpose with ndim < 2 is undefined#x1B[0m
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.11/typing.py#x1B[0m:2025: ValueError
Check warning on line 0 in xarray.tests.test_namedarray.TestNamedArray
github-actions / Test Results
All 9 runs failed: test_duck_array_class (xarray.tests.test_namedarray.TestNamedArray)
artifacts/Test results for Linux-3.10 bare-minimum/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10/pytest.xml [took 0s]
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Linux-3.12/pytest.xml [took 0s]
artifacts/Test results for Windows-3.10/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.10/pytest.xml [took 0s]
artifacts/Test results for macOS-3.12/pytest.xml [took 0s]
Raw output
TypeError: a (<class 'xarray.tests.test_namedarray.CustomArrayIndexable'>) is not a valid _arrayfunction or _arrayapi. Missing following attrs:
_arrayfunction - {'__array_ufunc__', '__array_function__', 'imag', 'real'}
_arrayapi - {'to_device', 'device', 'mT'}
self = <xarray.tests.test_namedarray.TestNamedArray object at 0x7ffa6273e250>
def test_duck_array_class(self) -> None:
numpy_a: NDArray[np.int64]
numpy_a = np.array([2.1, 4], dtype=np.dtype(np.int64))
check_duck_array_typevar(numpy_a)
masked_a: np.ma.MaskedArray[Any, np.dtype[np.int64]]
masked_a = np.ma.asarray([2.1, 4], dtype=np.dtype(np.int64)) # type: ignore[no-untyped-call]
check_duck_array_typevar(masked_a)
custom_a: CustomArrayIndexable[Any, np.dtype[np.int64]]
custom_a = CustomArrayIndexable(numpy_a)
> check_duck_array_typevar(custom_a)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_namedarray.py#x1B[0m:382:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
a = <xarray.tests.test_namedarray.CustomArrayIndexable object at 0x7ffa5df83750>
def check_duck_array_typevar(a: duckarray[Any, _DType]) -> duckarray[Any, _DType]:
# Mypy checks a is valid:
b: duckarray[Any, _DType] = a
# Runtime check if valid:
if isinstance(b, _arrayfunction_or_api):
return b
else:
missing_attrs = ""
actual_attrs = set(dir(b))
for t in _arrayfunction_or_api:
if sys.version_info >= (3, 13):
# https://github.com/python/cpython/issues/104873
from typing import get_protocol_members
expected_attrs = get_protocol_members(t)
elif sys.version_info >= (3, 12):
expected_attrs = t.__protocol_attrs__
else:
from typing import _get_protocol_attrs # type: ignore[attr-defined]
expected_attrs = _get_protocol_attrs(t)
missing_attrs_ = expected_attrs - actual_attrs
if missing_attrs_:
missing_attrs += f"{t.__name__} - {missing_attrs_}\n"
> raise TypeError(
f"a ({type(a)}) is not a valid _arrayfunction or _arrayapi. "
"Missing following attrs:\n"
f"{missing_attrs}"
)
#x1B[1m#x1B[31mE TypeError: a (<class 'xarray.tests.test_namedarray.CustomArrayIndexable'>) is not a valid _arrayfunction or _arrayapi. Missing following attrs:#x1B[0m
#x1B[1m#x1B[31mE _arrayfunction - {'__array_ufunc__', '__array_function__', 'imag', 'real'}#x1B[0m
#x1B[1m#x1B[31mE _arrayapi - {'to_device', 'device', 'mT'}#x1B[0m
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_namedarray.py#x1B[0m:115: TypeError
Check warning on line 0 in xarray.tests.test_namedarray.TestNamedArray
github-actions / Test Results
5 out of 9 runs failed: test_duck_array_class_array_api (xarray.tests.test_namedarray.TestNamedArray)
artifacts/Test results for Linux-3.10 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10/pytest.xml [took 0s]
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Windows-3.10/pytest.xml [took 0s]
artifacts/Test results for macOS-3.10/pytest.xml [took 0s]
Raw output
ValueError: x must be at least 2-dimensional for matrix_transpose
self = <xarray.tests.test_namedarray.TestNamedArray object at 0x7ffa6273e890>
def test_duck_array_class_array_api(self) -> None:
# Test numpy's array api:
nxp = pytest.importorskip("array_api_strict", minversion="1.0")
# TODO: nxp doesn't use dtype typevars, so can only use Any for the moment:
arrayapi_a: duckarray[Any, Any] # duckarray[Any, np.dtype[np.int64]]
arrayapi_a = nxp.asarray([2.1, 4], dtype=nxp.int64)
> check_duck_array_typevar(arrayapi_a)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_namedarray.py#x1B[0m:391:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_namedarray.py#x1B[0m:94: in check_duck_array_typevar
if isinstance(b, _arrayfunction_or_api):
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.11/typing.py#x1B[0m:2025: in __instancecheck__
if all(hasattr(instance, attr) and
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.11/typing.py#x1B[0m:2025: in <genexpr>
if all(hasattr(instance, attr) and
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.11/site-packages/array_api_strict/_array_object.py#x1B[0m:1178: in mT
return matrix_transpose(self)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
x = Array([2, 4], dtype=array_api_strict.int64)
def matrix_transpose(x: Array, /) -> Array:
if x.ndim < 2:
> raise ValueError("x must be at least 2-dimensional for matrix_transpose")
#x1B[1m#x1B[31mE ValueError: x must be at least 2-dimensional for matrix_transpose#x1B[0m
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.11/site-packages/array_api_strict/_linear_algebra_functions.py#x1B[0m:50: ValueError
Check warning on line 0 in xarray.tests.test_namedarray.TestNamedArray
github-actions / Test Results
4 out of 9 runs failed: test_expand_dims[None-3-expected_shape0-expected_dims0] (xarray.tests.test_namedarray.TestNamedArray)
artifacts/Test results for Linux-3.10 bare-minimum/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Windows-3.10/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
Raw output
FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.
self = <xarray.tests.test_namedarray.TestNamedArray object at 0x000002546018ED50>
target = <Namedarray, shape=(2, 5), dims=('x', 'y'), dtype=float64, data=[[0. 0.5 1. 1.5 2. ]
[2.5 3. 3.5 4. 4.5]]>
dim = None, expected_ndim = 3, expected_shape = (1, 2, 5)
expected_dims = (None, 'x', 'y')
@pytest.mark.parametrize(
"dim,expected_ndim,expected_shape,expected_dims",
[
(None, 3, (1, 2, 5), (None, "x", "y")),
(_default, 3, (1, 2, 5), ("dim_2", "x", "y")),
("z", 3, (1, 2, 5), ("z", "x", "y")),
],
)
def test_expand_dims(
self,
target: NamedArray[Any, np.dtype[np.float32]],
dim: _Dim | Default,
expected_ndim: int,
expected_shape: _ShapeLike,
expected_dims: _DimsLike,
) -> None:
> result = target.expand_dims(dim=dim)
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\tests\test_namedarray.py#x1B[0m:527:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\core.py#x1B[0m:1593: in expand_dims
from xarray.namedarray._array_api import expand_dims
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\__init__.py#x1B[0m:71: in <module>
from xarray.namedarray._array_api._dtypes import (
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\_dtypes.py#x1B[0m:18: in <module>
bool = _xp.bool
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
attr = 'bool'
def __getattr__(attr):
# Warn for expired attributes, and return a dummy function
# that always raises an exception.
import warnings
import math
try:
msg = __expired_functions__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
def _expired(*args, **kwds):
raise RuntimeError(msg)
return _expired
# Emit warnings for deprecated attributes
try:
val, msg = __deprecated_attrs__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
return val
if attr in __future_scalars__:
# And future warnings for those that will change, but also give
# the AttributeError
> warnings.warn(
f"In the future `np.{attr}` will be defined as the "
"corresponding NumPy scalar.", FutureWarning, stacklevel=2)
#x1B[1m#x1B[31mE FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.#x1B[0m
#x1B[1m#x1B[31mC:\Users\runneradmin\micromamba\envs\xarray-tests\Lib\site-packages\numpy\__init__.py#x1B[0m:319: FutureWarning
Check warning on line 0 in xarray.tests.test_namedarray.TestNamedArray
github-actions / Test Results
4 out of 9 runs failed: test_expand_dims[dim1-3-expected_shape1-expected_dims1] (xarray.tests.test_namedarray.TestNamedArray)
artifacts/Test results for Linux-3.10 bare-minimum/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Windows-3.10/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
Raw output
FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.
self = <xarray.tests.test_namedarray.TestNamedArray object at 0x000002546018F020>
target = <Namedarray, shape=(2, 5), dims=('x', 'y'), dtype=float64, data=[[0. 0.5 1. 1.5 2. ]
[2.5 3. 3.5 4. 4.5]]>
dim = <Default>, expected_ndim = 3, expected_shape = (1, 2, 5)
expected_dims = ('dim_2', 'x', 'y')
@pytest.mark.parametrize(
"dim,expected_ndim,expected_shape,expected_dims",
[
(None, 3, (1, 2, 5), (None, "x", "y")),
(_default, 3, (1, 2, 5), ("dim_2", "x", "y")),
("z", 3, (1, 2, 5), ("z", "x", "y")),
],
)
def test_expand_dims(
self,
target: NamedArray[Any, np.dtype[np.float32]],
dim: _Dim | Default,
expected_ndim: int,
expected_shape: _ShapeLike,
expected_dims: _DimsLike,
) -> None:
> result = target.expand_dims(dim=dim)
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\tests\test_namedarray.py#x1B[0m:527:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\core.py#x1B[0m:1593: in expand_dims
from xarray.namedarray._array_api import expand_dims
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\__init__.py#x1B[0m:71: in <module>
from xarray.namedarray._array_api._dtypes import (
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\_dtypes.py#x1B[0m:18: in <module>
bool = _xp.bool
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
attr = 'bool'
def __getattr__(attr):
# Warn for expired attributes, and return a dummy function
# that always raises an exception.
import warnings
import math
try:
msg = __expired_functions__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
def _expired(*args, **kwds):
raise RuntimeError(msg)
return _expired
# Emit warnings for deprecated attributes
try:
val, msg = __deprecated_attrs__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
return val
if attr in __future_scalars__:
# And future warnings for those that will change, but also give
# the AttributeError
> warnings.warn(
f"In the future `np.{attr}` will be defined as the "
"corresponding NumPy scalar.", FutureWarning, stacklevel=2)
#x1B[1m#x1B[31mE FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.#x1B[0m
#x1B[1m#x1B[31mC:\Users\runneradmin\micromamba\envs\xarray-tests\Lib\site-packages\numpy\__init__.py#x1B[0m:319: FutureWarning
Check warning on line 0 in xarray.tests.test_namedarray.TestNamedArray
github-actions / Test Results
4 out of 9 runs failed: test_expand_dims[z-3-expected_shape2-expected_dims2] (xarray.tests.test_namedarray.TestNamedArray)
artifacts/Test results for Linux-3.10 bare-minimum/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Windows-3.10/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
Raw output
FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.
self = <xarray.tests.test_namedarray.TestNamedArray object at 0x0000023BECB2D190>
target = <Namedarray, shape=(2, 5), dims=('x', 'y'), dtype=float64, data=[[0. 0.5 1. 1.5 2. ]
[2.5 3. 3.5 4. 4.5]]>
dim = 'z', expected_ndim = 3, expected_shape = (1, 2, 5)
expected_dims = ('z', 'x', 'y')
@pytest.mark.parametrize(
"dim,expected_ndim,expected_shape,expected_dims",
[
(None, 3, (1, 2, 5), (None, "x", "y")),
(_default, 3, (1, 2, 5), ("dim_2", "x", "y")),
("z", 3, (1, 2, 5), ("z", "x", "y")),
],
)
def test_expand_dims(
self,
target: NamedArray[Any, np.dtype[np.float32]],
dim: _Dim | Default,
expected_ndim: int,
expected_shape: _ShapeLike,
expected_dims: _DimsLike,
) -> None:
> result = target.expand_dims(dim=dim)
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\tests\test_namedarray.py#x1B[0m:527:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\core.py#x1B[0m:1593: in expand_dims
from xarray.namedarray._array_api import expand_dims
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\__init__.py#x1B[0m:71: in <module>
from xarray.namedarray._array_api._dtypes import (
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\_dtypes.py#x1B[0m:18: in <module>
bool = _xp.bool
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
attr = 'bool'
def __getattr__(attr):
# Warn for expired attributes, and return a dummy function
# that always raises an exception.
import warnings
import math
try:
msg = __expired_functions__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
def _expired(*args, **kwds):
raise RuntimeError(msg)
return _expired
# Emit warnings for deprecated attributes
try:
val, msg = __deprecated_attrs__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
return val
if attr in __future_scalars__:
# And future warnings for those that will change, but also give
# the AttributeError
> warnings.warn(
f"In the future `np.{attr}` will be defined as the "
"corresponding NumPy scalar.", FutureWarning, stacklevel=2)
#x1B[1m#x1B[31mE FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.#x1B[0m
#x1B[1m#x1B[31mC:\Users\runneradmin\micromamba\envs\xarray-tests\Lib\site-packages\numpy\__init__.py#x1B[0m:319: FutureWarning
Check warning on line 0 in xarray.tests.test_namedarray.TestNamedArray
github-actions / Test Results
4 out of 9 runs failed: test_permute_dims[dims0-expected_sizes0] (xarray.tests.test_namedarray.TestNamedArray)
artifacts/Test results for Linux-3.10 bare-minimum/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Windows-3.10/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
Raw output
FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.
self = <xarray.tests.test_namedarray.TestNamedArray object at 0x0000020B47B533E0>
target = <Namedarray, shape=(2, 5), dims=('x', 'y'), dtype=float64, data=[[0. 0.5 1. 1.5 2. ]
[2.5 3. 3.5 4. 4.5]]>
dims = (), expected_sizes = {'x': 2, 'y': 5}
@pytest.mark.parametrize(
"dims, expected_sizes",
[
((), {"y": 5, "x": 2}),
(["y", "x"], {"y": 5, "x": 2}),
(["y", ...], {"y": 5, "x": 2}),
],
)
def test_permute_dims(
self,
target: NamedArray[Any, np.dtype[np.float32]],
dims: _DimsLike,
expected_sizes: dict[_Dim, _IntOrUnknown],
) -> None:
> actual = target.permute_dims(*dims)
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\tests\test_namedarray.py#x1B[0m:546:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\core.py#x1B[0m:1487: in permute_dims
from xarray.namedarray._array_api import permute_dims
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\__init__.py#x1B[0m:71: in <module>
from xarray.namedarray._array_api._dtypes import (
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\_dtypes.py#x1B[0m:18: in <module>
bool = _xp.bool
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
attr = 'bool'
def __getattr__(attr):
# Warn for expired attributes, and return a dummy function
# that always raises an exception.
import warnings
import math
try:
msg = __expired_functions__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
def _expired(*args, **kwds):
raise RuntimeError(msg)
return _expired
# Emit warnings for deprecated attributes
try:
val, msg = __deprecated_attrs__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
return val
if attr in __future_scalars__:
# And future warnings for those that will change, but also give
# the AttributeError
> warnings.warn(
f"In the future `np.{attr}` will be defined as the "
"corresponding NumPy scalar.", FutureWarning, stacklevel=2)
#x1B[1m#x1B[31mE FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.#x1B[0m
#x1B[1m#x1B[31mC:\Users\runneradmin\micromamba\envs\xarray-tests\Lib\site-packages\numpy\__init__.py#x1B[0m:319: FutureWarning
Check warning on line 0 in xarray.tests.test_namedarray.TestNamedArray
github-actions / Test Results
4 out of 9 runs failed: test_permute_dims[dims1-expected_sizes1] (xarray.tests.test_namedarray.TestNamedArray)
artifacts/Test results for Linux-3.10 bare-minimum/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Windows-3.10/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
Raw output
FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.
self = <xarray.tests.test_namedarray.TestNamedArray object at 0x0000023BECB2D670>
target = <Namedarray, shape=(2, 5), dims=('x', 'y'), dtype=float64, data=[[0. 0.5 1. 1.5 2. ]
[2.5 3. 3.5 4. 4.5]]>
dims = ['y', 'x'], expected_sizes = {'x': 2, 'y': 5}
@pytest.mark.parametrize(
"dims, expected_sizes",
[
((), {"y": 5, "x": 2}),
(["y", "x"], {"y": 5, "x": 2}),
(["y", ...], {"y": 5, "x": 2}),
],
)
def test_permute_dims(
self,
target: NamedArray[Any, np.dtype[np.float32]],
dims: _DimsLike,
expected_sizes: dict[_Dim, _IntOrUnknown],
) -> None:
> actual = target.permute_dims(*dims)
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\tests\test_namedarray.py#x1B[0m:546:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\core.py#x1B[0m:1487: in permute_dims
from xarray.namedarray._array_api import permute_dims
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\__init__.py#x1B[0m:71: in <module>
from xarray.namedarray._array_api._dtypes import (
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\_dtypes.py#x1B[0m:18: in <module>
bool = _xp.bool
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
attr = 'bool'
def __getattr__(attr):
# Warn for expired attributes, and return a dummy function
# that always raises an exception.
import warnings
import math
try:
msg = __expired_functions__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
def _expired(*args, **kwds):
raise RuntimeError(msg)
return _expired
# Emit warnings for deprecated attributes
try:
val, msg = __deprecated_attrs__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
return val
if attr in __future_scalars__:
# And future warnings for those that will change, but also give
# the AttributeError
> warnings.warn(
f"In the future `np.{attr}` will be defined as the "
"corresponding NumPy scalar.", FutureWarning, stacklevel=2)
#x1B[1m#x1B[31mE FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.#x1B[0m
#x1B[1m#x1B[31mC:\Users\runneradmin\micromamba\envs\xarray-tests\Lib\site-packages\numpy\__init__.py#x1B[0m:319: FutureWarning
Check warning on line 0 in xarray.tests.test_namedarray.TestNamedArray
github-actions / Test Results
4 out of 9 runs failed: test_permute_dims[dims2-expected_sizes2] (xarray.tests.test_namedarray.TestNamedArray)
artifacts/Test results for Linux-3.10 bare-minimum/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Windows-3.10/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
Raw output
FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.
self = <xarray.tests.test_namedarray.TestNamedArray object at 0x0000020B47B53650>
target = <Namedarray, shape=(2, 5), dims=('x', 'y'), dtype=float64, data=[[0. 0.5 1. 1.5 2. ]
[2.5 3. 3.5 4. 4.5]]>
dims = ['y', Ellipsis], expected_sizes = {'x': 2, 'y': 5}
@pytest.mark.parametrize(
"dims, expected_sizes",
[
((), {"y": 5, "x": 2}),
(["y", "x"], {"y": 5, "x": 2}),
(["y", ...], {"y": 5, "x": 2}),
],
)
def test_permute_dims(
self,
target: NamedArray[Any, np.dtype[np.float32]],
dims: _DimsLike,
expected_sizes: dict[_Dim, _IntOrUnknown],
) -> None:
> actual = target.permute_dims(*dims)
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\tests\test_namedarray.py#x1B[0m:546:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\core.py#x1B[0m:1487: in permute_dims
from xarray.namedarray._array_api import permute_dims
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\__init__.py#x1B[0m:71: in <module>
from xarray.namedarray._array_api._dtypes import (
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\_dtypes.py#x1B[0m:18: in <module>
bool = _xp.bool
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
attr = 'bool'
def __getattr__(attr):
# Warn for expired attributes, and return a dummy function
# that always raises an exception.
import warnings
import math
try:
msg = __expired_functions__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
def _expired(*args, **kwds):
raise RuntimeError(msg)
return _expired
# Emit warnings for deprecated attributes
try:
val, msg = __deprecated_attrs__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
return val
if attr in __future_scalars__:
# And future warnings for those that will change, but also give
# the AttributeError
> warnings.warn(
f"In the future `np.{attr}` will be defined as the "
"corresponding NumPy scalar.", FutureWarning, stacklevel=2)
#x1B[1m#x1B[31mE FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.#x1B[0m
#x1B[1m#x1B[31mC:\Users\runneradmin\micromamba\envs\xarray-tests\Lib\site-packages\numpy\__init__.py#x1B[0m:319: FutureWarning
Check warning on line 0 in xarray.tests.test_namedarray.TestNamedArray
github-actions / Test Results
4 out of 9 runs failed: test_permute_dims_errors (xarray.tests.test_namedarray.TestNamedArray)
artifacts/Test results for Linux-3.10 bare-minimum/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Windows-3.10/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
Raw output
FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.
self = <xarray.tests.test_namedarray.TestNamedArray object at 0x000002546018F9B0>
target = <Namedarray, shape=(2, 5), dims=('x', 'y'), dtype=float64, data=[[0. 0.5 1. 1.5 2. ]
[2.5 3. 3.5 4. 4.5]]>
def test_permute_dims_errors(
self,
target: NamedArray[Any, np.dtype[np.float32]],
) -> None:
with pytest.raises(ValueError, match=r"'y'.*permuted list"):
dims = ["y"]
> target.permute_dims(*dims)
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\tests\test_namedarray.py#x1B[0m:555:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\core.py#x1B[0m:1487: in permute_dims
from xarray.namedarray._array_api import permute_dims
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\__init__.py#x1B[0m:71: in <module>
from xarray.namedarray._array_api._dtypes import (
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\_dtypes.py#x1B[0m:18: in <module>
bool = _xp.bool
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
attr = 'bool'
def __getattr__(attr):
# Warn for expired attributes, and return a dummy function
# that always raises an exception.
import warnings
import math
try:
msg = __expired_functions__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
def _expired(*args, **kwds):
raise RuntimeError(msg)
return _expired
# Emit warnings for deprecated attributes
try:
val, msg = __deprecated_attrs__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
return val
if attr in __future_scalars__:
# And future warnings for those that will change, but also give
# the AttributeError
> warnings.warn(
f"In the future `np.{attr}` will be defined as the "
"corresponding NumPy scalar.", FutureWarning, stacklevel=2)
#x1B[1m#x1B[31mE FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.#x1B[0m
#x1B[1m#x1B[31mC:\Users\runneradmin\micromamba\envs\xarray-tests\Lib\site-packages\numpy\__init__.py#x1B[0m:319: FutureWarning
Check warning on line 0 in xarray.tests.test_namedarray.TestNamedArray
github-actions / Test Results
4 out of 9 runs failed: test_broadcast_to[broadcast_dims1-3] (xarray.tests.test_namedarray.TestNamedArray)
artifacts/Test results for Linux-3.10 bare-minimum/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Windows-3.10/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
Raw output
FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.
self = <xarray.tests.test_namedarray.TestNamedArray object at 0x0000020B47B53DA0>
target = <Namedarray, shape=(2, 5), dims=('x', 'y'), dtype=float64, data=[[0. 0.5 1. 1.5 2. ]
[2.5 3. 3.5 4. 4.5]]>
broadcast_dims = {'x': 2, 'y': 5, 'z': 2}, expected_ndim = 3
@pytest.mark.parametrize(
"broadcast_dims,expected_ndim",
[
({"x": 2, "y": 5}, 2),
({"x": 2, "y": 5, "z": 2}, 3),
({"w": 1, "x": 2, "y": 5}, 3),
],
)
def test_broadcast_to(
self,
target: NamedArray[Any, np.dtype[np.float32]],
broadcast_dims: Mapping[_Dim, int],
expected_ndim: int,
) -> None:
expand_dims = set(broadcast_dims.keys()) - set(target.dims)
# loop over expand_dims and call .expand_dims(dim=dim) in a loop
for dim in expand_dims:
> target = target.expand_dims(dim=dim)
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\tests\test_namedarray.py#x1B[0m:574:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\core.py#x1B[0m:1593: in expand_dims
from xarray.namedarray._array_api import expand_dims
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\__init__.py#x1B[0m:71: in <module>
from xarray.namedarray._array_api._dtypes import (
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\_dtypes.py#x1B[0m:18: in <module>
bool = _xp.bool
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
attr = 'bool'
def __getattr__(attr):
# Warn for expired attributes, and return a dummy function
# that always raises an exception.
import warnings
import math
try:
msg = __expired_functions__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
def _expired(*args, **kwds):
raise RuntimeError(msg)
return _expired
# Emit warnings for deprecated attributes
try:
val, msg = __deprecated_attrs__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
return val
if attr in __future_scalars__:
# And future warnings for those that will change, but also give
# the AttributeError
> warnings.warn(
f"In the future `np.{attr}` will be defined as the "
"corresponding NumPy scalar.", FutureWarning, stacklevel=2)
#x1B[1m#x1B[31mE FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.#x1B[0m
#x1B[1m#x1B[31mC:\Users\runneradmin\micromamba\envs\xarray-tests\Lib\site-packages\numpy\__init__.py#x1B[0m:319: FutureWarning
Check warning on line 0 in xarray.tests.test_namedarray.TestNamedArray
github-actions / Test Results
4 out of 9 runs failed: test_broadcast_to[broadcast_dims2-3] (xarray.tests.test_namedarray.TestNamedArray)
artifacts/Test results for Linux-3.10 bare-minimum/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Windows-3.10/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
Raw output
FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.
self = <xarray.tests.test_namedarray.TestNamedArray object at 0x0000023BECB2DF70>
target = <Namedarray, shape=(2, 5), dims=('x', 'y'), dtype=float64, data=[[0. 0.5 1. 1.5 2. ]
[2.5 3. 3.5 4. 4.5]]>
broadcast_dims = {'w': 1, 'x': 2, 'y': 5}, expected_ndim = 3
@pytest.mark.parametrize(
"broadcast_dims,expected_ndim",
[
({"x": 2, "y": 5}, 2),
({"x": 2, "y": 5, "z": 2}, 3),
({"w": 1, "x": 2, "y": 5}, 3),
],
)
def test_broadcast_to(
self,
target: NamedArray[Any, np.dtype[np.float32]],
broadcast_dims: Mapping[_Dim, int],
expected_ndim: int,
) -> None:
expand_dims = set(broadcast_dims.keys()) - set(target.dims)
# loop over expand_dims and call .expand_dims(dim=dim) in a loop
for dim in expand_dims:
> target = target.expand_dims(dim=dim)
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\tests\test_namedarray.py#x1B[0m:574:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\core.py#x1B[0m:1593: in expand_dims
from xarray.namedarray._array_api import expand_dims
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\__init__.py#x1B[0m:71: in <module>
from xarray.namedarray._array_api._dtypes import (
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\_dtypes.py#x1B[0m:18: in <module>
bool = _xp.bool
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
attr = 'bool'
def __getattr__(attr):
# Warn for expired attributes, and return a dummy function
# that always raises an exception.
import warnings
import math
try:
msg = __expired_functions__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
def _expired(*args, **kwds):
raise RuntimeError(msg)
return _expired
# Emit warnings for deprecated attributes
try:
val, msg = __deprecated_attrs__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
return val
if attr in __future_scalars__:
# And future warnings for those that will change, but also give
# the AttributeError
> warnings.warn(
f"In the future `np.{attr}` will be defined as the "
"corresponding NumPy scalar.", FutureWarning, stacklevel=2)
#x1B[1m#x1B[31mE FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.#x1B[0m
#x1B[1m#x1B[31mC:\Users\runneradmin\micromamba\envs\xarray-tests\Lib\site-packages\numpy\__init__.py#x1B[0m:319: FutureWarning
Check warning on line 0 in xarray.tests.test_rolling.TestDataArrayRolling
github-actions / Test Results
7 out of 9 runs failed: test_rolling_reduce[numbagg-numpy-std-4-1-True-2] (xarray.tests.test_rolling.TestDataArrayRolling)
artifacts/Test results for Linux-3.10 bare-minimum/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10/pytest.xml [took 0s]
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Windows-3.10/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.10/pytest.xml [took 0s]
Raw output
ValueError: matrix transpose with ndim < 2 is undefined
self = <xarray.tests.test_rolling.TestDataArrayRolling object at 0x7efd48baa110>
da = <xarray.DataArray (time: 11)> Size: 88B
array([ 0., nan, 1., 2., nan, 3., 4., 5., nan, 6., 7.])
Dimensions without coordinates: time
center = True, min_periods = 1, window = 4, name = 'std'
compute_backend = 'numbagg'
@pytest.mark.parametrize("da", (1, 2), indirect=True)
@pytest.mark.parametrize("center", (True, False))
@pytest.mark.parametrize("min_periods", (None, 1, 2, 3))
@pytest.mark.parametrize("window", (1, 2, 3, 4))
@pytest.mark.parametrize("name", ("sum", "mean", "std", "max"))
def test_rolling_reduce(
self, da, center, min_periods, window, name, compute_backend
) -> None:
if min_periods is not None and window < min_periods:
min_periods = window
if da.isnull().sum() > 1 and window == 1:
# this causes all nan slices
window = 2
rolling_obj = da.rolling(time=window, center=center, min_periods=min_periods)
# add nan prefix to numpy methods to get similar # behavior as bottleneck
> actual = rolling_obj.reduce(getattr(np, f"nan{name}"))
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_rolling.py#x1B[0m:259:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/rolling.py#x1B[0m:499: in reduce
windows = self._construct(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/rolling.py#x1B[0m:414: in _construct
window = obj.variable.rolling_window(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/variable.py#x1B[0m:2072: in rolling_window
var = duck_array_ops.astype(self, dtype, copy=False)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/duck_array_ops.py#x1B[0m:214: in astype
return xp.astype(data, dtype, **kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/namedarray/_array_api/_data_type_functions.py#x1B[0m:62: in astype
if isinstance(x._data, _arrayapi):
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.11/typing.py#x1B[0m:2025: in __instancecheck__
if all(hasattr(instance, attr) and
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.0 = <set_iterator object at 0x7efd3d981f40>
> if all(hasattr(instance, attr) and
# All *methods* can be blocked by setting them to None.
(not callable(getattr(cls, attr, None)) or
getattr(instance, attr) is not None)
for attr in _get_protocol_attrs(cls)):
#x1B[1m#x1B[31mE ValueError: matrix transpose with ndim < 2 is undefined#x1B[0m
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.11/typing.py#x1B[0m:2025: ValueError
Check warning on line 0 in xarray.tests.test_rolling.TestDataArrayRolling
github-actions / Test Results
4 out of 9 runs failed: test_rolling_reduce[numbagg-numpy-std-4-1-False-1] (xarray.tests.test_rolling.TestDataArrayRolling)
artifacts/Test results for Linux-3.10 bare-minimum/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Windows-3.10/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
Raw output
FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.
self = <xarray.tests.test_rolling.TestDataArrayRolling object at 0x0000020B4A981B80>
da = <xarray.DataArray (a: 3, time: 21, x: 4)> Size: 2kB
array([[[0.5488135 , 0.71518937, 0.60276338, 0.54488318],
...ates:
* time (time) datetime64[ns] 168B 2000-01-01 2000-01-02 ... 2000-01-21
Dimensions without coordinates: a, x
center = False, min_periods = 1, window = 4, name = 'std'
compute_backend = 'numbagg'
@pytest.mark.parametrize("da", (1, 2), indirect=True)
@pytest.mark.parametrize("center", (True, False))
@pytest.mark.parametrize("min_periods", (None, 1, 2, 3))
@pytest.mark.parametrize("window", (1, 2, 3, 4))
@pytest.mark.parametrize("name", ("sum", "mean", "std", "max"))
def test_rolling_reduce(
self, da, center, min_periods, window, name, compute_backend
) -> None:
if min_periods is not None and window < min_periods:
min_periods = window
if da.isnull().sum() > 1 and window == 1:
# this causes all nan slices
window = 2
rolling_obj = da.rolling(time=window, center=center, min_periods=min_periods)
# add nan prefix to numpy methods to get similar # behavior as bottleneck
> actual = rolling_obj.reduce(getattr(np, f"nan{name}"))
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\tests\test_rolling.py#x1B[0m:259:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\rolling.py#x1B[0m:499: in reduce
windows = self._construct(
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\rolling.py#x1B[0m:414: in _construct
window = obj.variable.rolling_window(
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\variable.py#x1B[0m:2072: in rolling_window
var = duck_array_ops.astype(self, dtype, copy=False)
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\duck_array_ops.py#x1B[0m:210: in astype
xp = get_array_namespace(data)
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\duck_array_ops.py#x1B[0m:65: in get_array_namespace
namespaces = {_get_array_namespace(t) for t in values}
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\duck_array_ops.py#x1B[0m:61: in _get_array_namespace
return x.__array_namespace__()
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\core.py#x1B[0m:462: in __array_namespace__
import xarray.namedarray._array_api as array_api
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\__init__.py#x1B[0m:71: in <module>
from xarray.namedarray._array_api._dtypes import (
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\_dtypes.py#x1B[0m:18: in <module>
bool = _xp.bool
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
attr = 'bool'
def __getattr__(attr):
# Warn for expired attributes, and return a dummy function
# that always raises an exception.
import warnings
import math
try:
msg = __expired_functions__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
def _expired(*args, **kwds):
raise RuntimeError(msg)
return _expired
# Emit warnings for deprecated attributes
try:
val, msg = __deprecated_attrs__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
return val
if attr in __future_scalars__:
# And future warnings for those that will change, but also give
# the AttributeError
> warnings.warn(
f"In the future `np.{attr}` will be defined as the "
"corresponding NumPy scalar.", FutureWarning, stacklevel=2)
#x1B[1m#x1B[31mE FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.#x1B[0m
#x1B[1m#x1B[31mC:\Users\runneradmin\micromamba\envs\xarray-tests\Lib\site-packages\numpy\__init__.py#x1B[0m:319: FutureWarning
Check warning on line 0 in xarray.tests.test_rolling.TestDataArrayRolling
github-actions / Test Results
7 out of 9 runs failed: test_rolling_reduce[numbagg-numpy-std-4-1-False-2] (xarray.tests.test_rolling.TestDataArrayRolling)
artifacts/Test results for Linux-3.10 bare-minimum/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10/pytest.xml [took 0s]
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Windows-3.10/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.10/pytest.xml [took 0s]
Raw output
ValueError: matrix transpose with ndim < 2 is undefined
self = <xarray.tests.test_rolling.TestDataArrayRolling object at 0x7efd48ba8a10>
da = <xarray.DataArray (time: 11)> Size: 88B
array([ 0., nan, 1., 2., nan, 3., 4., 5., nan, 6., 7.])
Dimensions without coordinates: time
center = False, min_periods = 1, window = 4, name = 'std'
compute_backend = 'numbagg'
@pytest.mark.parametrize("da", (1, 2), indirect=True)
@pytest.mark.parametrize("center", (True, False))
@pytest.mark.parametrize("min_periods", (None, 1, 2, 3))
@pytest.mark.parametrize("window", (1, 2, 3, 4))
@pytest.mark.parametrize("name", ("sum", "mean", "std", "max"))
def test_rolling_reduce(
self, da, center, min_periods, window, name, compute_backend
) -> None:
if min_periods is not None and window < min_periods:
min_periods = window
if da.isnull().sum() > 1 and window == 1:
# this causes all nan slices
window = 2
rolling_obj = da.rolling(time=window, center=center, min_periods=min_periods)
# add nan prefix to numpy methods to get similar # behavior as bottleneck
> actual = rolling_obj.reduce(getattr(np, f"nan{name}"))
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_rolling.py#x1B[0m:259:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/rolling.py#x1B[0m:499: in reduce
windows = self._construct(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/rolling.py#x1B[0m:414: in _construct
window = obj.variable.rolling_window(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/variable.py#x1B[0m:2072: in rolling_window
var = duck_array_ops.astype(self, dtype, copy=False)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/duck_array_ops.py#x1B[0m:214: in astype
return xp.astype(data, dtype, **kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/namedarray/_array_api/_data_type_functions.py#x1B[0m:62: in astype
if isinstance(x._data, _arrayapi):
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.11/typing.py#x1B[0m:2025: in __instancecheck__
if all(hasattr(instance, attr) and
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.0 = <set_iterator object at 0x7efd3c396800>
> if all(hasattr(instance, attr) and
# All *methods* can be blocked by setting them to None.
(not callable(getattr(cls, attr, None)) or
getattr(instance, attr) is not None)
for attr in _get_protocol_attrs(cls)):
#x1B[1m#x1B[31mE ValueError: matrix transpose with ndim < 2 is undefined#x1B[0m
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.11/typing.py#x1B[0m:2025: ValueError
Check warning on line 0 in xarray.tests.test_rolling.TestDataArrayRolling
github-actions / Test Results
4 out of 9 runs failed: test_rolling_reduce[numbagg-numpy-std-4-2-True-1] (xarray.tests.test_rolling.TestDataArrayRolling)
artifacts/Test results for Linux-3.10 bare-minimum/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Windows-3.10/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
Raw output
FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.
self = <xarray.tests.test_rolling.TestDataArrayRolling object at 0x0000020B4A981D60>
da = <xarray.DataArray (a: 3, time: 21, x: 4)> Size: 2kB
array([[[0.5488135 , 0.71518937, 0.60276338, 0.54488318],
...ates:
* time (time) datetime64[ns] 168B 2000-01-01 2000-01-02 ... 2000-01-21
Dimensions without coordinates: a, x
center = True, min_periods = 2, window = 4, name = 'std'
compute_backend = 'numbagg'
@pytest.mark.parametrize("da", (1, 2), indirect=True)
@pytest.mark.parametrize("center", (True, False))
@pytest.mark.parametrize("min_periods", (None, 1, 2, 3))
@pytest.mark.parametrize("window", (1, 2, 3, 4))
@pytest.mark.parametrize("name", ("sum", "mean", "std", "max"))
def test_rolling_reduce(
self, da, center, min_periods, window, name, compute_backend
) -> None:
if min_periods is not None and window < min_periods:
min_periods = window
if da.isnull().sum() > 1 and window == 1:
# this causes all nan slices
window = 2
rolling_obj = da.rolling(time=window, center=center, min_periods=min_periods)
# add nan prefix to numpy methods to get similar # behavior as bottleneck
> actual = rolling_obj.reduce(getattr(np, f"nan{name}"))
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\tests\test_rolling.py#x1B[0m:259:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\rolling.py#x1B[0m:499: in reduce
windows = self._construct(
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\rolling.py#x1B[0m:414: in _construct
window = obj.variable.rolling_window(
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\variable.py#x1B[0m:2072: in rolling_window
var = duck_array_ops.astype(self, dtype, copy=False)
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\duck_array_ops.py#x1B[0m:210: in astype
xp = get_array_namespace(data)
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\duck_array_ops.py#x1B[0m:65: in get_array_namespace
namespaces = {_get_array_namespace(t) for t in values}
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\duck_array_ops.py#x1B[0m:61: in _get_array_namespace
return x.__array_namespace__()
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\core.py#x1B[0m:462: in __array_namespace__
import xarray.namedarray._array_api as array_api
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\__init__.py#x1B[0m:71: in <module>
from xarray.namedarray._array_api._dtypes import (
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\_dtypes.py#x1B[0m:18: in <module>
bool = _xp.bool
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
attr = 'bool'
def __getattr__(attr):
# Warn for expired attributes, and return a dummy function
# that always raises an exception.
import warnings
import math
try:
msg = __expired_functions__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
def _expired(*args, **kwds):
raise RuntimeError(msg)
return _expired
# Emit warnings for deprecated attributes
try:
val, msg = __deprecated_attrs__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
return val
if attr in __future_scalars__:
# And future warnings for those that will change, but also give
# the AttributeError
> warnings.warn(
f"In the future `np.{attr}` will be defined as the "
"corresponding NumPy scalar.", FutureWarning, stacklevel=2)
#x1B[1m#x1B[31mE FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.#x1B[0m
#x1B[1m#x1B[31mC:\Users\runneradmin\micromamba\envs\xarray-tests\Lib\site-packages\numpy\__init__.py#x1B[0m:319: FutureWarning
Check warning on line 0 in xarray.tests.test_rolling.TestDataArrayRolling
github-actions / Test Results
7 out of 9 runs failed: test_rolling_reduce[numbagg-numpy-std-4-2-True-2] (xarray.tests.test_rolling.TestDataArrayRolling)
artifacts/Test results for Linux-3.10 bare-minimum/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10/pytest.xml [took 0s]
artifacts/Test results for Linux-3.11 all-but-dask/pytest.xml [took 0s]
artifacts/Test results for Windows-3.10/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
artifacts/Test results for macOS-3.10/pytest.xml [took 0s]
Raw output
ValueError: matrix transpose with ndim < 2 is undefined
self = <xarray.tests.test_rolling.TestDataArrayRolling object at 0x7efd48ba99d0>
da = <xarray.DataArray (time: 11)> Size: 88B
array([ 0., nan, 1., 2., nan, 3., 4., 5., nan, 6., 7.])
Dimensions without coordinates: time
center = True, min_periods = 2, window = 4, name = 'std'
compute_backend = 'numbagg'
@pytest.mark.parametrize("da", (1, 2), indirect=True)
@pytest.mark.parametrize("center", (True, False))
@pytest.mark.parametrize("min_periods", (None, 1, 2, 3))
@pytest.mark.parametrize("window", (1, 2, 3, 4))
@pytest.mark.parametrize("name", ("sum", "mean", "std", "max"))
def test_rolling_reduce(
self, da, center, min_periods, window, name, compute_backend
) -> None:
if min_periods is not None and window < min_periods:
min_periods = window
if da.isnull().sum() > 1 and window == 1:
# this causes all nan slices
window = 2
rolling_obj = da.rolling(time=window, center=center, min_periods=min_periods)
# add nan prefix to numpy methods to get similar # behavior as bottleneck
> actual = rolling_obj.reduce(getattr(np, f"nan{name}"))
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/tests/test_rolling.py#x1B[0m:259:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/rolling.py#x1B[0m:499: in reduce
windows = self._construct(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/rolling.py#x1B[0m:414: in _construct
window = obj.variable.rolling_window(
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/variable.py#x1B[0m:2072: in rolling_window
var = duck_array_ops.astype(self, dtype, copy=False)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/core/duck_array_ops.py#x1B[0m:214: in astype
return xp.astype(data, dtype, **kwargs)
#x1B[1m#x1B[31m/home/runner/work/xarray/xarray/xarray/namedarray/_array_api/_data_type_functions.py#x1B[0m:62: in astype
if isinstance(x._data, _arrayapi):
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.11/typing.py#x1B[0m:2025: in __instancecheck__
if all(hasattr(instance, attr) and
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.0 = <set_iterator object at 0x7efd441f4a00>
> if all(hasattr(instance, attr) and
# All *methods* can be blocked by setting them to None.
(not callable(getattr(cls, attr, None)) or
getattr(instance, attr) is not None)
for attr in _get_protocol_attrs(cls)):
#x1B[1m#x1B[31mE ValueError: matrix transpose with ndim < 2 is undefined#x1B[0m
#x1B[1m#x1B[31m/home/runner/micromamba/envs/xarray-tests/lib/python3.11/typing.py#x1B[0m:2025: ValueError
Check warning on line 0 in xarray.tests.test_rolling.TestDataArrayRolling
github-actions / Test Results
4 out of 9 runs failed: test_rolling_reduce[numbagg-numpy-std-4-2-False-1] (xarray.tests.test_rolling.TestDataArrayRolling)
artifacts/Test results for Linux-3.10 bare-minimum/pytest.xml [took 0s]
artifacts/Test results for Linux-3.10 min-all-deps/pytest.xml [took 0s]
artifacts/Test results for Windows-3.10/pytest.xml [took 0s]
artifacts/Test results for Windows-3.12/pytest.xml [took 0s]
Raw output
FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.
self = <xarray.tests.test_rolling.TestDataArrayRolling object at 0x0000020B4A981F40>
da = <xarray.DataArray (a: 3, time: 21, x: 4)> Size: 2kB
array([[[0.5488135 , 0.71518937, 0.60276338, 0.54488318],
...ates:
* time (time) datetime64[ns] 168B 2000-01-01 2000-01-02 ... 2000-01-21
Dimensions without coordinates: a, x
center = False, min_periods = 2, window = 4, name = 'std'
compute_backend = 'numbagg'
@pytest.mark.parametrize("da", (1, 2), indirect=True)
@pytest.mark.parametrize("center", (True, False))
@pytest.mark.parametrize("min_periods", (None, 1, 2, 3))
@pytest.mark.parametrize("window", (1, 2, 3, 4))
@pytest.mark.parametrize("name", ("sum", "mean", "std", "max"))
def test_rolling_reduce(
self, da, center, min_periods, window, name, compute_backend
) -> None:
if min_periods is not None and window < min_periods:
min_periods = window
if da.isnull().sum() > 1 and window == 1:
# this causes all nan slices
window = 2
rolling_obj = da.rolling(time=window, center=center, min_periods=min_periods)
# add nan prefix to numpy methods to get similar # behavior as bottleneck
> actual = rolling_obj.reduce(getattr(np, f"nan{name}"))
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\tests\test_rolling.py#x1B[0m:259:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\rolling.py#x1B[0m:499: in reduce
windows = self._construct(
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\rolling.py#x1B[0m:414: in _construct
window = obj.variable.rolling_window(
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\variable.py#x1B[0m:2072: in rolling_window
var = duck_array_ops.astype(self, dtype, copy=False)
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\duck_array_ops.py#x1B[0m:210: in astype
xp = get_array_namespace(data)
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\duck_array_ops.py#x1B[0m:65: in get_array_namespace
namespaces = {_get_array_namespace(t) for t in values}
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\core\duck_array_ops.py#x1B[0m:61: in _get_array_namespace
return x.__array_namespace__()
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\core.py#x1B[0m:462: in __array_namespace__
import xarray.namedarray._array_api as array_api
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\__init__.py#x1B[0m:71: in <module>
from xarray.namedarray._array_api._dtypes import (
#x1B[1m#x1B[31mD:\a\xarray\xarray\xarray\namedarray\_array_api\_dtypes.py#x1B[0m:18: in <module>
bool = _xp.bool
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
attr = 'bool'
def __getattr__(attr):
# Warn for expired attributes, and return a dummy function
# that always raises an exception.
import warnings
import math
try:
msg = __expired_functions__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
def _expired(*args, **kwds):
raise RuntimeError(msg)
return _expired
# Emit warnings for deprecated attributes
try:
val, msg = __deprecated_attrs__[attr]
except KeyError:
pass
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
return val
if attr in __future_scalars__:
# And future warnings for those that will change, but also give
# the AttributeError
> warnings.warn(
f"In the future `np.{attr}` will be defined as the "
"corresponding NumPy scalar.", FutureWarning, stacklevel=2)
#x1B[1m#x1B[31mE FutureWarning: In the future `np.bool` will be defined as the corresponding NumPy scalar.#x1B[0m
#x1B[1m#x1B[31mC:\Users\runneradmin\micromamba\envs\xarray-tests\Lib\site-packages\numpy\__init__.py#x1B[0m:319: FutureWarning