⠒⠰⡱⣡⠲⠱⡐⢀⠄⠄⠐⡐⠐⠄⢂⠆⠡⡀⠂⠄⠀⢠⠀⠂⠠⠐⡐⠔⠔⡐⠜⡐⠅⠰⢌⠆⡅⠐⠐⢄⠄⢂⠄⠠⡀⠀⠠⠀⠀⠀⠀⠀⠄⢎⢢⡣⡱⢬⢢⢜⠲⡱⠱ ⢂⢒⢌⠖⡒⡱⢀⢀⠄⡀⠁⠠⢂⠡⣈⠄⠀⠀⠀⢀⠄⡀⠄⢠⢂⡔⢈⡁⣂⠜⠜⠡⣁⠤⣂⠔⡰⡰⡐⡄⡄⠄⠄⡀⠐⠁⢂⠄⡀⠀⡀⠀⠀⠠⠀⠡⠃⢼⢆⠱⠦⡣⡌ ⠰⠰⣈⡌⠲⠂⠀⠄⢀⢀⠁⡐⡐⠀⢠⠀⠀⠀⡀⠄⠠⡰⠆⡍⢀⠆⢠⢂⣜⣼⣿⣿⣿⣿⣿⣿⣻⡽⣞⣜⡜⡜⢆⢆⢂⢄⠄⡀⡐⠀⠀⠀⠀⠀⠄⢀⠐⡜⢼⡩⡸⢣⢣ ⠢⠢⣘⡔⡔⠔⠀⠀⠀⠀⠀⢀⢀⡀⠀⠄⢀⠀⠄⠆⢆⠁⡐⠄⢄⢎⣞⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣟⣟⣽⢯⡹⣚⢼⡼⡢⡒⠔⠄⡀⠀⠀⠀⢀⠤⡸⢣⢣⢍⣚⡸⢦⢣ ⠆⢒⡑⡅⠲⡰⡰⢆⠱⡰⡡⢆⠤⣀⠠⡀⠀⠄⢌⢀⠄⢆⢁⢆⢧⣻⣻⣿⣿⣿⣻⣽⣽⣝⣍⠝⡽⡽⡽⣻⣟⡽⡹⡹⡭⡊⢂⢄⢂⠄⡀⢦⢎⠲⡣⡣⢪⢎⢜⡒⡱⣘⢆ ⢢⠒⡡⡑⠴⠲⡱⣅⢌⢢⢣⡡⡌⠀⠄⠂⡀⠤⠠⠰⠤⢀⠜⡜⣟⣟⣟⣿⡿⡿⣟⡝⣍⢎⡘⡹⡭⣫⢿⣿⣿⡿⡅⢀⠤⡠⠠⡐⢂⠂⠄⡇⢬⢎⢣⢣⢪⡊⡜⡜⡚⣘⢜ ⠆⠆⡱⡐⡔⡱⣉⡌⡌⠲⡡⣡⠀⠀⠀⢀⠐⠄⡐⠌⡰⡘⡜⣽⣟⣿⣿⣟⣯⣎⢦⣂⢰⢹⡳⣌⢯⣿⢿⣿⣿⣿⡲⡀⠠⢐⠅⠄⢂⠀⡐⠜⢬⢊⠖⠧⢪⢎⢜⢜⠒⡜⡜ ⠢⠒⡡⡡⢣⠲⠱⡡⠱⡱⠁⠠⢀⠠⠂⠄⠄⡀⠠⡘⡘⡧⣫⣟⢿⣿⣿⣿⣿⣿⣿⢿⣟⡽⣞⡽⣿⣿⣿⣿⣿⣿⣿⡆⢂⠆⢂⢂⢂⠂⠠⢢⢃⡜⢎⠧⡱⢣⡱⣘⠖⠜⡜ ⠦⠦⡱⡑⠥⢪⡒⣅⢢⠁⠀⢀⠄⠂⢀⢆⢆⡜⡞⣭⢞⢽⣻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢯⢂⠒⡔⡔⡔⠄⠄⢂⢡⢘⢜⢎⢎⢎⠆⡎⢎⠜⢜ ⢢⢢⡑⡅⢢⠒⡰⡑⢌⢀⠀⢀⢀⣌⢣⢎⢞⢻⡽⡜⡽⣯⡿⣿⣿⣿⡿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢿⣻⢿⣿⣿⣿⣻⣂⠌⠆⠥⠢⢂⠄⠄⠤⣈⢎⢎⢚⢬⡒⡱⢆⠲⡘ ⠤⢢⢃⠣⢢⢢⢆⡅⢬⢃⢣⡱⡹⣞⢽⣹⢯⣏⢻⡝⡽⣻⣻⢿⣿⣿⢿⣟⡿⡿⡿⣿⣿⣿⣿⣿⣟⣽⣿⣿⣿⣿⣿⡿⣯⢢⠒⡌⢆⠂⡀⠄⢄⢂⡘⣌⠦⡱⡅⡱⢲⢒⠜ ⢆⠦⡱⡡⡒⢲⢡⠥⠲⡱⣱⢣⡹⡹⡼⣻⢯⢯⣹⢼⣹⣻⣿⣿⣿⣿⣿⣿⣻⢿⢿⣿⣿⣿⣟⣟⣽⣿⡱⣤⣦⢢⢏⢇⠣⢂⢆⠥⠢⠂⠠⢀⠄⠂⡈⢬⢆⡜⡜⡘⣌⢆⠲
Leonardo is a Python library that facilitates computation involving aestetic numeric relationships. At its core, it entails a façade to mathematical objects that are derived from the golden ratio, the silver ratio, or the bronce ratio. It aims to make visual computing easier by abstracting from the algebraic forms, allowing us programmers to reason about geometry at a higher order.
Leonardo embraces transcendental numbers that have aesthetic significance. These numbers are made accessible as constants in denoted namespaces. Each constant is foundational to a set of higher order concepts later explained.
The geometric mean between any two numbers is a ratio. It establishes a relationship that carries aestetic qualities. The deliberate choice of a ratio, given some number, introduces a distinct aesthetic flavor to the composition with that number. The golden ratio is abundant in structures of natural growth, such as the human physis.
from leonardo import Gold, Silver, Bronce
str(Gold.ratio)
# 1.618
str(Silver.ratio)
# 2.414
str(Bronce.ratio)
# 3.303
I invite you to explore these relationships and their flavors in your compositions.
By applying the ratios to circles, we get a set of angles that carry related aesthetic properties and allow for other kinds of composition. The rotation by the golden angle constitutes a recurring principle in nature, found in the branching of trees, flower petals, and macroscopic structures of galaxies.
from leonardo import Gold, Silver, Bronce
str(Gold.angle)
# '137.51°'
str(Silver.angle)
# '105.44°'
str(Bronce.angle)
# '83.67°'
from leonardo import Gold
g = Gold() # g is a golden number
g17 = Gold(17) # g17 is a scaled golden number
g[-2:3] # prints the neighborhood of g
# [0.38196601125010515,
# 0.6180339887498948,
# 1.0,
# 1.618033988749895,
# 2.618033988749895]
# setting up fontsizes as a graphic designer
body, subheadline, headline = g17[-1:2]
body
# 10.506577808748212
subheadline
# 17.0
headline
# 27.50657780874821
Make sure to read up on the silver and bronce ratio also, they are super cool.
A golden angle is an object with common units as properties.
from leonardo import Gold
Gold.angle
# Angle(fraction=0.38196601125010515)
[a.radians for a in Gold.angle_sequence[:5]]
# [2.399963229728653, 4.799926459457306, 7.199889689185959, 9.599852918914612]
[a.radians_canonic for a in Gold.angle_sequence[:5]]
# [2.399963229728653, 4.799926459457306, 0.9167043820063725, 3.316667611735026]
[a.degrees for a in Gold.angle_sequence[:5]]
# [137.50776405003785, 275.0155281000757, 412.5232921501135, 550.0310562001514]
[a.degrees_canonic for a in Gold.angle_sequence[:5]]
# [137.50776405003785, 275.0155281000757, 52.52329215011349, 190.0310562001514]
[a.fraction for a in Gold.angle_sequence[:5]]
# [0.3819660112501051,
# 0.7639320225002102,
# 1.1458980337503153,
# 1.5278640450004204]
[a.fraction_canonic for a in Gold.angle_sequence[:5]]
# [0.3819660112501051,
# 0.7639320225002102,
# 0.1458980337503153,
# 0.5278640450004204]
Gold.angle.complex
# (-0.7373688780783197+0.6754902942615238j)
x = Gold.angle.complex.real
x
# -0.7373688780783197
y = Gold.angle.complex.imag
y
# 0.6754902942615238
for angle in Gold.angle_sequence[:5]:
p = angle.complex.real, angle.complex.imag
print(p)
# (-0.7373688780783197, 0.6754902942615238)
# (0.08742572471695988, -0.9961710408648278)
# (0.6084388609788626, 0.7936007512916959)
# (-0.9847134853154287, -0.17418195037931164)
This is still an early version and no interfaces are guaranteed to stay stable.
Run the test-suite to see if the code base is behaving as expected.
python3 -m unittest