Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature/issue 189 #199

Merged
merged 9 commits into from
Sep 15, 2023
Merged
Show file tree
Hide file tree
Changes from 11 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,8 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
### Removed
### Fixed
- [issue/119](https://github.com/podaac/l2ss-py/issues/119): GPM variable dimensions are renamed from "phony_dim" to the dimension names in the variable attribute "DimensionNames"
- [issue/189](https://github.com/podaac/l2ss-py/issues/189): Fix temporal subsetting for SWOT collections, use mask_and_scale args for opening granule file if we have an overflow in time fill value, use original dataset encoding when writing file.

### Security


Expand Down
1 change: 1 addition & 0 deletions cmr/ops_associations.txt
Original file line number Diff line number Diff line change
Expand Up @@ -87,3 +87,4 @@ C2601583089-POCLOUD
C2601581863-POCLOUD
C2628598397-POCLOUD
C2036882456-POCLOUD
C2296989380-POCLOUD
36 changes: 19 additions & 17 deletions podaac/subsetter/subset.py
Original file line number Diff line number Diff line change
Expand Up @@ -1162,10 +1162,22 @@ def subset(file_to_subset: str, bbox: np.ndarray, output_file: str,

if min_time or max_time:
args['decode_times'] = True
# check fill value and dtype, we know that this will cause an integer Overflow with xarray
if 'time' in nc_dataset.variables.keys():
try:
if nc_dataset['time'].getncattr('_FillValue') == nc.default_fillvals.get('f8') and \
nc_dataset['time'].dtype == 'float64':
args['mask_and_scale'] = True
except AttributeError:
pass

with xr.open_dataset(
xr.backends.NetCDF4DataStore(nc_dataset),
**args
) as dataset:

original_dataset = dataset

lat_var_names, lon_var_names, time_var_names = get_coordinate_variable_names(
dataset=dataset,
lat_var_names=lat_var_names,
Expand Down Expand Up @@ -1224,28 +1236,18 @@ def subset(file_to_subset: str, bbox: np.ndarray, output_file: str,
lon_var_names=lon_var_names
))
else:
encoding = {}
compression = {"zlib": True, "complevel": 5, "_FillValue": None}

if (min_time or max_time) and not all(
dim_size == 1 for dim_size in dataset.dims.values()):
encoding = {
var_name: {
'units': nc_dataset.variables[var_name].__dict__['units'],
'zlib': True,
"complevel": 5,
"_FillValue": None
} for var_name in time_var_names
if 'units' in nc_dataset.variables[var_name].__dict__
}
for var in dataset.data_vars:
if var not in encoding:
encoding[var] = compression
if dataset[var].dtype == 'S1' and isinstance(dataset[var].attrs.get('_FillValue'), bytes):
dataset[var].attrs['_FillValue'] = dataset[var].attrs['_FillValue'].decode('UTF-8')

var_encoding = {
"zlib": True,
"complevel": 5,
"_FillValue": original_dataset[var].encoding.get('_FillValue')
}

data_var = dataset[var].copy()
data_var.load().to_netcdf(output_file, 'a', encoding={var: encoding.get(var)})
data_var.load().to_netcdf(output_file, 'a', encoding={var: var_encoding})
del data_var

with nc.Dataset(output_file, 'a') as dataset_attr:
Expand Down
18 changes: 18 additions & 0 deletions tests/test_subset.py
Original file line number Diff line number Diff line change
Expand Up @@ -158,6 +158,24 @@ def test_subset_variables(test_file, data_dir, subset_output_dir, request):
decode_times=False,
decode_coords=False)


nc_in_ds = nc.Dataset(join(data_dir, test_file))
nc_out_ds = nc.Dataset(join(subset_output_dir, output_file))

time_var_name = None
try:
lat_var_name = subset.compute_coordinate_variable_names(in_ds)[0][0]
time_var_name = subset.compute_time_variable_name(in_ds, in_ds[lat_var_name])
except ValueError:
# unable to determine lon lat vars
pass

if time_var_name:
assert nc_in_ds[time_var_name].units == nc_out_ds[time_var_name].units

nc_in_ds.close()
nc_out_ds.close()

for in_var, out_var in zip(in_ds.data_vars.items(), out_ds.data_vars.items()):
# compare names
assert in_var[0] == out_var[0]
Expand Down
Loading