Skip to content

pns-mam/commande

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PNS

MAM5/M2-INUM

Commande optimale

2024-25

Discussion

Plan du cours

  1. Introduction
  2. Méthodes directes
  3. Principe du maximum de Pontrjagin
  4. Méthode de tir
  5. Model predictive control
  6. Reinforcement learning

CM 1

CM 2

CM 3

CM 4

CM 5

CM 6

CM 7

TP 1 - Navigation (solution) (solution 3 arcs)

TP 2 - Tir simple

TP 3 - MPC

TP 4 - Hexapawn

TP 5 - OpenAI gym: taxi!

Organisation et intervenants

Évaluation

  • 1 EX partiel (coeff. 1)
  • 1 EX terminal (coeff. 1)

Exam CC no. 1 (2023-24)

Exam CC no. 2 (2023-24)

Références

Bertsekas, D. A course in reinforcement learning. Athena scientific, 2023

Borkar, X.; Meyn, S. P. The ODE method for convergence of stochastic approximation and reinforcement learning. SIAM J. Control Optim. 38 (2000), no. 2, 447-469

Ekeland I. Mathematics in the social sciences. Torino lectures, 2022

Evans, L. C. An introduction to mathematical optimal control theory. Univ. California, 2008

Fleming, W. H. ; Rishel, R. W. Deterministic and stochastic optimal control. Springer, 1975

Gardner, M. The unexpected hanging and other mathematical diversions. University of Chicago Press, 1991

Recht, B. A tour of reinforcement learning : the view from continuous control. arXiv :1806.09460, 2018

Sutton, R. S. ; Barto, A. G. Reinforcement learning : an introduction, MIT press, 2015

Trélat, E. Contrôle optimal, théorie et applications. Vuibert, 2005

Releases

No releases published

Packages

No packages published