forked from AILab-CVC/YOLO-World
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
update installation and cc3m dataset
- Loading branch information
1 parent
42eddad
commit b449b98
Showing
6 changed files
with
391 additions
and
7 deletions.
There are no files selected for viewing
183 changes: 183 additions & 0 deletions
183
.../yolo_world_v2_x_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_cc3mlite_train_lvis_minival.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,183 @@ | ||
_base_ = ('../../third_party/mmyolo/configs/yolov8/' | ||
'yolov8_x_syncbn_fast_8xb16-500e_coco.py') | ||
custom_imports = dict(imports=['yolo_world'], | ||
allow_failed_imports=False) | ||
|
||
# hyper-parameters | ||
num_classes = 1203 | ||
num_training_classes = 80 | ||
max_epochs = 100 # Maximum training epochs | ||
close_mosaic_epochs = 2 | ||
save_epoch_intervals = 2 | ||
text_channels = 512 | ||
neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2] | ||
neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32] | ||
base_lr = 2e-3 | ||
weight_decay = 0.05 / 2 | ||
train_batch_size_per_gpu = 16 | ||
# text_model_name = '../pretrained_models/clip-vit-base-patch32-projection' | ||
text_model_name = 'openai/clip-vit-base-patch32' | ||
# model settings | ||
model = dict( | ||
type='YOLOWorldDetector', | ||
mm_neck=True, | ||
num_train_classes=num_training_classes, | ||
num_test_classes=num_classes, | ||
data_preprocessor=dict(type='YOLOWDetDataPreprocessor'), | ||
backbone=dict( | ||
_delete_=True, | ||
type='MultiModalYOLOBackbone', | ||
image_model={{_base_.model.backbone}}, | ||
text_model=dict( | ||
type='HuggingCLIPLanguageBackbone', | ||
model_name=text_model_name, | ||
frozen_modules=['all'])), | ||
neck=dict(type='YOLOWorldPAFPN', | ||
guide_channels=text_channels, | ||
embed_channels=neck_embed_channels, | ||
num_heads=neck_num_heads, | ||
block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv')), | ||
bbox_head=dict(type='YOLOWorldHead', | ||
head_module=dict(type='YOLOWorldHeadModule', | ||
use_bn_head=True, | ||
embed_dims=text_channels, | ||
num_classes=num_training_classes)), | ||
train_cfg=dict(assigner=dict(num_classes=num_training_classes))) | ||
|
||
# dataset settings | ||
text_transform = [ | ||
dict(type='RandomLoadText', | ||
num_neg_samples=(num_classes, num_classes), | ||
max_num_samples=num_training_classes, | ||
padding_to_max=True, | ||
padding_value=''), | ||
dict(type='mmdet.PackDetInputs', | ||
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip', | ||
'flip_direction', 'texts')) | ||
] | ||
train_pipeline = [ | ||
*_base_.pre_transform, | ||
dict(type='MultiModalMosaic', | ||
img_scale=_base_.img_scale, | ||
pad_val=114.0, | ||
pre_transform=_base_.pre_transform), | ||
dict( | ||
type='YOLOv5RandomAffine', | ||
max_rotate_degree=0.0, | ||
max_shear_degree=0.0, | ||
scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale), | ||
max_aspect_ratio=_base_.max_aspect_ratio, | ||
border=(-_base_.img_scale[0] // 2, -_base_.img_scale[1] // 2), | ||
border_val=(114, 114, 114)), | ||
*_base_.last_transform[:-1], | ||
*text_transform, | ||
] | ||
train_pipeline_stage2 = [*_base_.train_pipeline_stage2[:-1], *text_transform] | ||
obj365v1_train_dataset = dict( | ||
type='MultiModalDataset', | ||
dataset=dict( | ||
type='YOLOv5Objects365V1Dataset', | ||
data_root='data/objects365v1/', | ||
ann_file='annotations/objects365_train.json', | ||
data_prefix=dict(img='train/'), | ||
filter_cfg=dict(filter_empty_gt=False, min_size=32)), | ||
class_text_path='data/texts/obj365v1_class_texts.json', | ||
pipeline=train_pipeline) | ||
|
||
mg_train_dataset = dict(type='YOLOv5MixedGroundingDataset', | ||
data_root='data/mixed_grounding/', | ||
ann_file='annotations/final_mixed_train_no_coco.json', | ||
data_prefix=dict(img='gqa/images/'), | ||
filter_cfg=dict(filter_empty_gt=False, min_size=32), | ||
pipeline=train_pipeline) | ||
|
||
flickr_train_dataset = dict( | ||
type='YOLOv5MixedGroundingDataset', | ||
data_root='data/flickr/', | ||
ann_file='annotations/final_flickr_separateGT_train.json', | ||
data_prefix=dict(img='full_images/'), | ||
filter_cfg=dict(filter_empty_gt=True, min_size=32), | ||
pipeline=train_pipeline) | ||
|
||
|
||
cc3m_train_dataset = dict(type='YOLOv5GeneralGroundingDataset', | ||
data_root='data/cc3m/', | ||
ann_file='annotations/cc3m_pseudo_annotations.json', | ||
data_prefix=dict(img='training'), | ||
filter_cfg=dict(filter_empty_gt=True, min_size=32), | ||
pipeline=train_pipeline) | ||
|
||
|
||
train_dataloader = dict(batch_size=train_batch_size_per_gpu, | ||
collate_fn=dict(type='yolow_collate'), | ||
dataset=dict(_delete_=True, | ||
type='ConcatDataset', | ||
datasets=[ | ||
obj365v1_train_dataset, | ||
flickr_train_dataset, | ||
mg_train_dataset, | ||
cc3m_train_dataset | ||
], | ||
ignore_keys=['classes', 'palette'])) | ||
|
||
test_pipeline = [ | ||
*_base_.test_pipeline[:-1], | ||
dict(type='LoadText'), | ||
dict(type='mmdet.PackDetInputs', | ||
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | ||
'scale_factor', 'pad_param', 'texts')) | ||
] | ||
|
||
coco_val_dataset = dict( | ||
_delete_=True, | ||
type='MultiModalDataset', | ||
dataset=dict(type='YOLOv5LVISV1Dataset', | ||
data_root='data/coco/', | ||
test_mode=True, | ||
ann_file='lvis/lvis_v1_minival_inserted_image_name.json', | ||
data_prefix=dict(img=''), | ||
batch_shapes_cfg=None), | ||
class_text_path='data/texts/lvis_v1_class_texts.json', | ||
pipeline=test_pipeline) | ||
val_dataloader = dict(dataset=coco_val_dataset) | ||
test_dataloader = val_dataloader | ||
|
||
val_evaluator = dict(type='mmdet.LVISMetric', | ||
ann_file='data/coco/lvis/lvis_v1_minival_inserted_image_name.json', | ||
metric='bbox') | ||
test_evaluator = val_evaluator | ||
|
||
# training settings | ||
default_hooks = dict(param_scheduler=dict(max_epochs=max_epochs), | ||
checkpoint=dict(interval=save_epoch_intervals, | ||
rule='greater')) | ||
custom_hooks = [ | ||
dict(type='EMAHook', | ||
ema_type='ExpMomentumEMA', | ||
momentum=0.0001, | ||
update_buffers=True, | ||
strict_load=False, | ||
priority=49), | ||
dict(type='mmdet.PipelineSwitchHook', | ||
switch_epoch=max_epochs - close_mosaic_epochs, | ||
switch_pipeline=train_pipeline_stage2) | ||
] | ||
train_cfg = dict(max_epochs=max_epochs, | ||
val_interval=10, | ||
dynamic_intervals=[((max_epochs - close_mosaic_epochs), | ||
_base_.val_interval_stage2)]) | ||
optim_wrapper = dict(optimizer=dict( | ||
_delete_=True, | ||
type='AdamW', | ||
lr=base_lr, | ||
weight_decay=weight_decay, | ||
batch_size_per_gpu=train_batch_size_per_gpu), | ||
paramwise_cfg=dict(bias_decay_mult=0.0, | ||
norm_decay_mult=0.0, | ||
custom_keys={ | ||
'backbone.text_model': | ||
dict(lr_mult=0.01), | ||
'logit_scale': | ||
dict(weight_decay=0.0) | ||
}), | ||
constructor='YOLOWv5OptimizerConstructor') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.