A PyTorch implementation of EfficientDet.
It is based on the
- official Tensorflow implementation by Mingxing Tan and the Google Brain team
- paper by Mingxing Tan, Ruoming Pang, Quoc V. Le EfficientDet: Scalable and Efficient Object Detection
There are other PyTorch implementations. Either their approach didn't fit my aim to correctly reproduce the Tensorflow models (but with a PyTorch feel and flexibility) or they cannot come close to replicating MS COCO training from scratch.
Aside from the default model configs, there is a lot of flexibility to facilitate experiments and rapid improvements here -- some options based on the official Tensorflow impl, some of my own:
- BiFPN connections and combination mode are fully configurable and not baked into the model code
- BiFPN and head modules can be switched between depthwise separable or standard convolutions
- Activations, batch norm layers are switchable via arguments (soon config)
- Any backbone in my
timm
model collection that supports feature extraction (features_only
arg) can be used as a bacbkone.- Currently this is includes to all models implemented by the EficientNet and MobileNetv3 classes (which also includes MNasNet, MobileNetV2, MixNet and more). More soon...
- Add updated TF ported weights for D3 model (better training) and model def and weights for new D7X model (54.3 val mAP)
- Fix Windows bug so it at least trains in non-distributed mode
Add updated D7 weights from Tensorflow impl, 53.1 validation mAP here (53.4 in TF)
New model results, I've trained a D1 model with some WIP augmentation enhancements (not commited), just squeaking by official weights.
EfficientDet-D1:
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.393798
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.586831
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.420305
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.191880
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.455586
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.571316
Also, Soyeb Nagori trained an EfficientDet-Lite0 config using this code and contributed the weights.
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.319861
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.500062
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.336777
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.111257
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.378062
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.501938
Unlike the other tf_ prefixed models this is not ported from (as of yet unreleased) TF official model, but it used
TF ported weights from timm
for the pretrained imagenet model as the backbone init, thus it uses SAME padding.
- Additional experimental model configs based on MobileNetV2, MobileNetV3, MixNet, EfficientNet-Lite. Requires
update to
timm==0.1.28
for string based activation factory. - Redundant bias config handled more consistency, defaults to config unless overridden by arg
Latest results in and training goal achieved. Slightly bested the TF model mAP results for D0 model. This model uses:
- typical PyTorch symmetric padding (instead of TF compatible SAME)
- my PyTorch trained EfficientNet-B0 as the pretrained starting weights (from
timm
) - BiFPN/Head layers without any redundant conv/BN bias layers (slightly fewer params 3877763 vs 3880067)
My latest D0 run:
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.336251
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.521584
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.356439
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.123988
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.395033
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.521695
TF ported D0 weights:
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.335653
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.516253
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.353884
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.125278
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.386957
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.528071
Pretrained weights added for this model efficientdet_d0
(Tensorflow port is tf_efficientdet_d0
)
- A D0 result in, started before last improvements:
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.331
- Another D0 and D1 running with the latest code.
A bunch of changes:
- COCO eval per epoch for better selection of checkpoints while training, works with distributed
- optimizations to both train and inference that should see small throughput gains
- doing the above, attempted to torchscript the full training loss + anchor labeler but ran into problems so had to back out part way due messy hacks or weird AMP issues causing silent bad results. Hopefully in PyTorch 1.6 there will be less TS issues.
- updated results after clipping boxes, now pretty much exact match to official, even slightly better on a few models
- added model factory, pretrained download, cleanup model configs
- setup.py, pypi release
Initial D1 training results in -- close but not quite there. Definitely in reach and better than any other non-official EfficientDet impl I've seen.
Biggest missing element is proper per-epoch mAP validation for better checkpoint selection (than loss based). I was resisting doing full COCO eval because it's so slow, but may throw that in for now...
D1: Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.382
Previous D0 result: Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.324
First decent MSCOCO training results (from scratch, w/ pretrained classification backbone weights as starting point). 32.4 mAP for D0. Working on improvements and D1 trials still running.
Taking a pause on training, some high priority things came up. There are signs of life on the training branch, was working the basic augs before priority switch, loss fn appeared to be doing something sane with distributed training working, no proper eval yet, init not correct yet. I will get to it, with SOTA training config and good performance as the end goal (as with my EfficientNet work).
Cleanup post-processing. Less code and a five-fold throughput increase on the smaller models. D0 running > 130 img/s on a single 2080Ti, D1 > 130 img/s on dual 2080Ti up to D7 @ 8.5 img/s.
Replace generate_detections
with PyTorch impl using torchvision batched_nms. Significant performance increase with minor (+/-.001 mAP) score differences. Quite a bit faster than original TF impl on a GPU now.
Initial code with working validation posted. Yes, it's a little slow, but I think faster than the official impl on a GPU if you leave AMP enabled. Post processing needs some love.
- Feature extraction from my EfficientNet implementations (https://github.com/rwightman/gen-efficientnet-pytorch or https://github.com/rwightman/pytorch-image-models)
- Low level blocks / helpers (SeparableConv, create_pool2d (same padding), etc)
- PyTorch implementation of BiFPN, BoxNet, ClassNet modules and related submodules
- Port Tensorflow checkpoints to PyTorch -- initial D1 checkpoint converted, state_dict loaded, on to validation....
- Basic MS COCO validation script
- Temporary (hacky) COCO dataset and transform
- Port reference TF anchor and object detection code
- Verify model output sanity
- Integrate MSCOCO eval metric calcs
- Some cleanup, testing
- Submit to test-dev server, all good
- pretrained URL based weight download
- Torch hub
- Remove redundant bias layers that exist in the official impl and weights
- Add visualization support
- Performance improvements, numpy TF detection code -> optimized PyTorch
- Verify/fix Torchscript and ONNX export compatibility
- Try PyTorch 1.6/1.7 w/ NHWC (channels last) order which matches TF impl
- Basic Training (object detection) reimplementation
- Advanced Training w/ Rand/AutoAugment, etc
- Training (semantic segmentation) experiments
- Integration with Detectron2 / MMDetection codebases
- Addition and cleanup of EfficientNet based U-Net and DeepLab segmentation models that I've used in past projects
- Addition and cleanup of OpenImages dataset/training support from a past project
- Exploration of instance segmentation possibilities...
If you are an organization is interested in sponsoring and any of this work, or prioritization of the possible future directions interests you, feel free to contact me (issue, LinkedIn, Twitter, hello at rwightman dot com). I will setup a github sponser if there is any interest.
Variant | Download | mAP (val2017) | mAP (test-dev2017) | mAP (TF official val2017) | mAP (TF official test-dev2017) |
---|---|---|---|---|---|
lite0 | tf_efficientdet_lite0.pth | 32.0 | TBD | N/A | N/A |
D0 | tf_efficientdet_d0.pth | 33.6 | TBD | 33.5 | 33.8 |
D0 | efficientdet_d0.pth | 33.6 | TBD | 33.5 | 33.8 |
D1 | tf_efficientdet_d1.pth | 39.3 | TBD | 39.1 | 39.6 |
D1 | efficientdet_d1.pth | 39.4 | 39.5 | 39.1 | 39.6 |
D2 | tf_efficientdet_d2.pth | 42.6 | 43.1 | 42.5 | 43 |
D3 | tf_efficientdet_d3.pth | 47.1 | TBD | 47.2 | 47.5 |
D4 | tf_efficientdet_d4.pth | 49.1 | TBD | 49.0 | 49.4 |
D5 | tf_efficientdet_d5.pth | 50.4 | TBD | 50.5 | 50.7 |
D6 | tf_efficientdet_d6.pth | 51.2 | TBD | 51.3 | 51.7 |
D7 | tf_efficientdet_d7.pth | 53.1 | 53.4 | 53.4 | 53.7 |
D7X | tf_efficientdet_d7x.pth | 54.3 | TBD | 54.4 | 55.1 |
NOTE: Eval for TF D3, D7, and D7X numbers above were run with soft-nms, but still using normal NMS here.
Tested in a Python 3.7 or 3.8 conda environment in Linux with:
- PyTorch 1.4
- PyTorch Image Models (timm) 0.1.20,
pip install timm
or local install from (https://github.com/rwightman/pytorch-image-models) - Apex AMP master (as of 2020-04)
NOTE - There is a conflict/bug with Numpy 1.18+ and pycocotools, force install numpy <= 1.17.5 or the coco eval will fail, the validation script will still save the output JSON and that can be run through eval again later.
MSCOCO 2017 validation data:
wget http://images.cocodataset.org/zips/val2017.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
unzip val2017.zip
unzip annotations_trainval2017.zip
MSCOCO 2017 test-dev data:
wget http://images.cocodataset.org/zips/test2017.zip
unzip -q test2017.zip
wget http://images.cocodataset.org/annotations/image_info_test2017.zip
unzip image_info_test2017.zip
Run validation (val2017 by default) with D2 model: python validation.py /localtion/of/mscoco/ --model tf_efficientdet_d2 --checkpoint tf_efficientdet_d2.pth
Run test-dev2017: python validation.py /localtion/of/mscoco/ --model tf_efficientdet_d2 --checkpoint tf_efficientdet_d2.pth --anno test-dev2017
TODO: Need an inference script
./distributed_train.sh 2 /mscoco --model tf_efficientdet_d0 -b 16 --amp --lr .04 --warmup-epochs 5 --sync-bn --opt fusedmomentum --fill-color mean --model-ema
NOTE:
- Training script currently defaults to a model that does NOT have redundant conv + BN bias layers like the official models, set correct flag when validating.
- I've only trained with img mean (
--fill-color mean
) as the background for crop/scale/aspect fill, the official repo uses black pixel (0) (--fill-color 0
). Both likely work fine. - The official training code uses EMA weight averaging by default, it's not clear there is a point in doing this with the cosine LR schedule, I find the non-EMA weights end up better than EMA in the last 10-20% of training epochs
- The default h-params is a very close to unstable (exploding loss), don't try using Nesterov momentum. Try to keep the batch size up, use sync-bn.
- Alex Shonenkov has a clear and concise Kaggle kernel which illustrates fine-tuning these models for detecting wheat heads: https://www.kaggle.com/shonenkov/training-efficientdet
- If you have a good example script or kernel training these models with a different dataset, feel free to notify me for inclusion here...
Latest training run with .336 for D0 (on 4x 1080ti):
./distributed_train.sh 4 /mscoco --model efficientdet_d0 -b 22 --amp --lr .12 --sync-bn --opt fusedmomentum --warmup-epochs 5 --lr-noise 0.4 0.9 --model-ema --model-ema-decay 0.9999
These hparams above resulted in a good model, a few points:
- the mAP peaked very early (epoch 200 of 300) and then appeared to overfit, so likely still room for improvement
- I enabled my experimental LR noise which tends to work well with EMA enabled
- the effective LR is a bit higher than official. Official is .08 for batch 64, this works out to .0872
- drop_path (aka survival_prob / drop_connect) rate of 0.1, which is higher than the suggested 0.0 for D0 in official, but lower than the 0.2 for the other models
- longer EMA period than default
VAL2017
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.336251
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.521584
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.356439
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.123988
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.395033
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.521695
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.287121
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.441450
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.467914
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.197697
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.552515
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.689297
Latest run with .394 mAP (on 4x 1080ti):
./distributed_train.sh 4 /mscoco --model efficientdet_d1 -b 10 --amp --lr .06 --sync-bn --opt fusedmomentum --warmup-epochs 5 --lr-noise 0.4 0.9 --model-ema --model-ema-decay 0.99995
For this run I used some improved augmentations, still experimenting so not ready for release, should work well without them but will likely start overfitting a bit sooner and possibly end up a in the .385-.39 range.
NOTE: I've only tried submitting D2 and D7 to dev server for sanity check so far
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.431
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.624
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.463
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.226
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.471
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.585
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.345
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.543
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.575
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.342
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.632
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.756
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.534
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.726
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.577
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.356
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.569
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.660
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.397
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.644
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.682
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.508
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.718
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.818
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.336
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.516
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.354
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.125
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.387
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.528
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.288
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.440
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.467
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.194
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.549
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.686
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.393
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.583
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.419
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.187
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.447
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.572
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.323
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.501
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.532
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.295
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.599
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.734
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.426
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.618
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.452
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.237
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.481
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.590
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.342
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.537
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.569
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.348
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.633
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.748
NOTE: Official TF impl uses soft-nms for their scoring of this model, not impl here yet
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.471223
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.661550
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.505127
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.301385
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.518339
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.626571
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.365186
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.582691
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.617252
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.424689
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.670761
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.779611
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.491
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.685
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.531
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.334
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.539
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.641
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.375
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.598
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.635
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.468
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.683
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.780
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.504
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.700
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.543
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.337
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.549
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.646
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.381
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.617
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.654
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.485
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.696
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.791
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.512
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.706
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.551
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.348
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.555
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.654
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.386
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.623
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.661
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.500
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.701
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.794
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.531256
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.724700
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.571787
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.368872
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.573938
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.668253
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.393620
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.637601
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.676987
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.524850
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.717553
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.806352
NOTE: Official TF impl uses soft-nms for their scoring of this model, not impl here yet
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.543
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.737
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.585
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.401
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.579
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.680
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.398
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.649
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.689
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.550
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.725
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.823