overload_numpy
provides easy-to-use tools for working with NumPy
's
__array_(u)func(tion)__
. The library is fully typed and wheels are compiled
with mypyc.
First, some imports:
>>> from dataclasses import dataclass, fields >>> from typing import ClassVar >>> import numpy as np >>> from overload_numpy import NumPyOverloader, NPArrayOverloadMixin
Now we can define a NumPyOverloader
instance:
>>> W_FUNCS = NumPyOverloader()
The overloads apply to an array wrapping class. Let's define one:
>>> @dataclass ... class Wrap1D(NPArrayOverloadMixin): ... '''A simple array wrapper.''' ... x: np.ndarray ... NP_OVERLOADS: ClassVar[NumPyOverloader] = W_FUNCS>>> w1d = Wrap1D(np.arange(3))
Now both numpy.ufunc
(e.g. numpy.add
) and numpy
functions (e.g.
numpy.concatenate
) can be overloaded and registered for Wrap1D
.
>>> @W_FUNCS.implements(np.add, Wrap1D) ... def add(w1, w2): ... return Wrap1D(np.add(w1.x, w2.x))>>> @W_FUNCS.implements(np.concatenate, Wrap1D) ... def concatenate(w1ds): ... return Wrap1D(np.concatenate(tuple(w.x for w in w1ds)))
Time to check these work:
>>> np.add(w1d, w1d) Wrap1D(x=array([0, 2, 4]))>>> np.concatenate((w1d, w1d)) Wrap1D(x=array([0, 1, 2, 0, 1, 2]))
ufunc
also have a number of methods: 'at', 'accumulate', etc. The function
dispatch mechanism in NEP13 says that "If one of
the input or output arguments implements __array_ufunc__, it is executed instead
of the ufunc." Currently the overloaded numpy.add
does not work for any of
the ufunc
methods.
>>> try: np.add.accumulate(w1d) ... except Exception: print("failed") failed
ufunc
method overloads can be registered on the wrapped add
implementation:
>>> @add.register('accumulate') ... def add_accumulate(w1): ... return Wrap1D(np.add.accumulate(w1.x))>>> np.add.accumulate(w1d) Wrap1D(x=array([0, 1, 3]))
What if we defined a subclass of Wrap1D
?
>>> @dataclass ... class Wrap2D(Wrap1D): ... '''A simple 2-array wrapper.''' ... y: np.ndarray
The overload for numpy.concatenate
registered on Wrap1D
will not work
correctly for Wrap2D
. However, NumPyOverloader
supports single-dispatch
on the calling type for the overload, so overloads can be customized for
subclasses.
>>> @W_FUNCS.implements(np.add, Wrap2D) ... def add(w1, w2): ... print("using Wrap2D implementation...") ... return Wrap2D(np.add(w1.x, w2.x), ... np.add(w1.y, w2.y))>>> @W_FUNCS.implements(np.concatenate, Wrap2D) ... def concatenate2(w2ds): ... print("using Wrap2D implementation...") ... return Wrap2D(np.concatenate(tuple(w.x for w in w2ds)), ... np.concatenate(tuple(w.y for w in w2ds)))
Checking these work:
>>> w2d = Wrap2D(np.arange(3), np.arange(3, 6)) >>> np.add(w2d, w2d) using Wrap2D implementation... Wrap2D(x=array([0, 2, 4]), y=array([ 6, 8, 10]))>>> np.concatenate((w2d, w2d)) using Wrap2D implementation... Wrap2D(x=array([0, 1, 2, 0, 1, 2]), y=array([3, 4, 5, 3, 4, 5]))
Great! But rather than defining a new implementation for each subclass, let's see how we could write a more broadly applicable overload:
>>> @W_FUNCS.implements(np.add, Wrap1D) # overriding both ... @W_FUNCS.implements(np.add, Wrap2D) # overriding both ... def add_general(w1, w2): ... WT = type(w1) ... return WT(*(np.add(getattr(w1, f.name), getattr(w2, f.name)) ... for f in fields(WT)))>>> @W_FUNCS.implements(np.concatenate, Wrap1D) # overriding both ... @W_FUNCS.implements(np.concatenate, Wrap2D) # overriding both ... def concatenate_general(ws): ... WT = type(ws[0]) ... return WT(*(np.concatenate(tuple(getattr(w, f.name) for w in ws)) ... for f in fields(WT)))
Checking these work:
>>> np.add(w2d, w2d) Wrap2D(x=array([0, 2, 4]), y=array([ 6, 8, 10]))>>> np.concatenate((w2d, w2d)) Wrap2D(x=array([0, 1, 2, 0, 1, 2]), y=array([3, 4, 5, 3, 4, 5]))>>> @dataclass ... class Wrap3D(Wrap2D): ... '''A simple 3-array wrapper.''' ... z: np.ndarray>>> w3d = Wrap3D(np.arange(2), np.arange(3, 5), np.arange(6, 8)) >>> np.add(w3d, w3d) Wrap3D(x=array([0, 2]), y=array([6, 8]), z=array([12, 14])) >>> np.concatenate((w3d, w3d)) Wrap3D(x=array([0, 1, 0, 1]), y=array([3, 4, 3, 4]), z=array([6, 7, 6, 7]))
In the previous examples we wrote implementations for a single NumPy function. Overloading the full set of NumPy functions this way would take a long time.
Wouldn't it be better if we could write many fewer, based on groups of NumPy functions?
>>> add_funcs = {np.add, np.subtract} >>> @W_FUNCS.assists(add_funcs, types=Wrap1D, dispatch_on=Wrap1D) ... def add_assists(cls, func, w1, w2, *args, **kwargs): ... return cls(*(func(getattr(w1, f.name), getattr(w2, f.name), *args, **kwargs) ... for f in fields(cls)))>>> stack_funcs = {np.vstack, np.hstack, np.dstack, np.column_stack, np.row_stack} >>> @W_FUNCS.assists(stack_funcs, types=Wrap1D, dispatch_on=Wrap1D) ... def stack_assists(cls, func, ws, *args, **kwargs): ... return cls(*(func(tuple(getattr(v, f.name) for v in ws), *args, **kwargs) ... for f in fields(cls)))
Checking these work:
>>> np.subtract(w2d, w2d) Wrap2D(x=array([0, 0, 0]), y=array([0, 0, 0]))>>> np.vstack((w1d, w1d)) Wrap1D(x=array([[0, 1, 2], [0, 1, 2]]))>>> np.hstack((w1d, w1d)) Wrap1D(x=array([0, 1, 2, 0, 1, 2]))
We would also like to implement the accumulate
method for all the
add_funcs
overloads:
>>> @add_assists.register("accumulate") ... def add_accumulate_assists(cls, func, w1, *args, **kwargs): ... return cls(*(func(getattr(w1, f.name), *args, **kwargs) ... for f in fields(cls)))>>> np.subtract.accumulate(w2d) Wrap2D(x=array([ 0, -1, -3]), y=array([ 3, -1, -6]))
Want to see about type constraints and the API? Check out the docs!