This project provides the code and results for 'WaveNet: Wavelet Network With Knowledge Distillation for RGB-T Salient Object Detection', IEEE TIP, 2023. IEEE link
- Old codebase: https://github.com/nowander/WaveNet/tree/default
Python 3.7+, Pytorch 1.5.0+, Cuda 10.2+, TensorboardX 2.1, opencv-python, pytorch_wavelets, timm.
- Download the RGB-T raw data from LSNet.
- Options: Download the pre-trained wavemlp-s from wavemlp.
- We have two ways of training knowledge distillation:
Modify the train_root
train_root
save_path
path in config.py
according to your own data path.
-
Train the WaveNet:
python train.py
Modify the test_path
path in config.py
according to your own data path.
-
Test the WaveNet:
python test.py
- You can select one of the toolboxes to get the metrics CODToolbox / PySODMetrics
- RGB-T baidu pin: gl01
- RGB-T baidu pin: v5pb
@ARTICLE{10127616,
author={Zhou, Wujie and Sun, Fan and Jiang, Qiuping and Cong, Runmin and Hwang, Jenq-Neng},
journal={IEEE Transactions on Image Processing},
title={WaveNet: Wavelet Network With Knowledge Distillation for RGB-T Salient Object Detection},
year={2023},
volume={32},
number={},
pages={3027-3039},
doi={10.1109/TIP.2023.3275538}}
The implementation of this project is based on the codebases below.
- BBS-Net
- LSNet
- Wavemlp
- Evaluate tools CODToolbox / PySODMetrics
If you find this project helpful, Please also cite the codebases above. Besides, we also thank zyrant.
Please drop me an email for any problems or discussion: https://wujiezhou.github.io/ ([email protected]).